Purpose: To measure the cross-sectional area (CSA) of hamstring anterior cruciate ligament
(ACL) grafts in humans up to 2 years postoperatively and to estimate the appropriate
graft-notch distance (the distance between ACL graft and roof or wall of the notch)
at surgery. Type of Study: Case series. Methods: Fifty-nine patients, who had consented to have a magnetic resonance imaging (MRI)
evaluation postoperatively, underwent endoscopic ACL reconstruction using 3- to 5-strand
autogenous hamstring tendons. Intraoperatively, the CSA of the graft was measured
using a custom-made area micrometer. Postoperatively, 115 axial MRIs of the grafts
(48 at 3 months, 44 at 12 months, and 23 at 24 months) were obtained. They were transmitted
to a personal computer and the CSAs of the grafts’ midsubstance were calculated. To
evaluate the accuracy of the MRI measurement, another 15 patients who consented to
have MRI 2 days after surgery were selected and intraoperative graft CSA measurements
and graft axial MRI were performed 2 days after surgery. Results: The CSAs of the grafts measured by MRI 2 days after surgery were well correlated
with those directly measured intraoperatively (γ = 0.905). The CSA of the grafts measured
intraoperatively was 43 ± 5 mm2, and those estimated by MRI at 3, 12, and 24 months were 50 ± 9 mm2, 54 ± 9 mm2, and 48 ± 12 mm2, respectively. The increase in graft diameter at 3, 12, and 24 months was 9% ± 8%,
13% ± 10%, and 7% ± 12%, respectively. Conclusions: In humans, the increase in CSA of the ACL graft was smaller compared with previous
animal studies. The graft CSA increased up to 29% (13% in diameter) 12 months after
surgery. When a 95% confidence interval was used, the percent increase in diameter
of the reconstructed graft was estimated to be less than 32% in 95% of the cases.
When the graft diameter was 7, 8, or 9 mm, a 1.1-, 1.3-, or 1.4-mm graft-notch distance,
respectively, was suitable for impingement-free graft during postoperative periods
with 95% of probability. Level of Evidence: Level IIII.
Key Words
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to ArthroscopyAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Failure of reconstruction of the anterior cruciate ligament due to impingement by the intercondylar roof.J Bone Joint Surg Am. 1993; 75: 1044-1055
- Roofplasty requirements in vitro for different tibial hole placements in anterior cruciate ligament reconstruction.Am J Sports Med. 1993; 21: 292-298
- Arthroscopic roofplasty.Arthroscopy. 1992; 8: 375-379
- Mechanical properties of primate vascularized vs. nonvascularized patellar tendon grafts.J Orthop Res. 1989; 7: 68-79
- A comparison of patellar tendon autograft and allograft used for anterior cruciate ligament reconstruction in the goat model.Am J Sports Med. 1993; 21: 176-185
- Comparisons of intraosseous graft healing between the doubled flexor tendon graft and the bone-patellar tendon-bone graft in anterior cruciate ligament reconstruction.Arthroscopy. 2001; 17: 461-476
- The influence of locally applied platelet-derived growth factor-BB on free tendon graft remodeling after anterior cruciate ligament reconstruction.Am J Sports Med. 2004; 32: 881-891
- Preoperative anterior knee laxity did not influence postoperative anterior knee stability restored by anterior cruciate ligament reconstruction.Arthroscopy. 2000; 16: 477-482
- Anterior cruciate ligament reconstruction with multistranded autogenous semitendinosus tendon.Am J Sports Med. 1996; 24: 504-509
- Development and application of a method for determining the in situ forces in anterior cruciate ligament fiber bundles [dissertation]. University of California, San Diego1988
- Cross-sectional area measurement of the semitendinosus tendon for anterior cruciate ligament reconstruction.Arthroscopy. 1998; 14: 696-701
- Effects of structure and strain measurement technique on the material properties of young human tendons and fascia.J Biomech. 1984; 17: 579-596
- An experimental study on reconstructive surgery of the anterior cruciate ligament.J Jpn Orthop Assoc. 1979; 53: 521-533
- Anterior and posterior cruciate ligament reconstruction in Rhesus monkeys. A histological, microangiographic, and biomechanical analysis.J Bone and Joint Surg Am. 1981; 63: 1270-1284
- Replacement of the anterior cruciate ligament by an allogeneic tendon graft. An experimental study in the dog.J Bone Joint Surg Br. 1984; 66: 672-681
- The relationship of vascularity and water content to tensile strength in a patellar tendon replacement of the anterior cruciate ligament in dogs.Am J Sports Med. 1986; 14: 436-448
- Evaluation of knee joint laxity and the structural properties for anterior cruciate ligament graft in the human. A case report.Am J Sports Med. 1997; 25: 203-206
- Evaluation of anterior cruciate ligament grafts with MRI [Japanese].Seikeigeka. 1996; 47: 678-683
- MR evaluation of human anterior cruciate ligament autograft on oblique axial imaging.J Comput Assist Tomogr. 1998; 22: 270-275
- Endoscopic reconstruction of the anterior cruciate ligament with quadrupled hamstring tendons. A correlation between MRI changes and restored stability of the knee.J Bone Joint Surg Br. 2001; 83: 834-837
- Second-look arthroscopy of ACL grafts with multi-stranded hamstring tendons.Arthroscopy. 2004; 20: 287-293
Article info
Identification
Copyright
© 2005 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.