Advertisement
Original article| Volume 21, ISSUE 8, P934-941, August 2005

Cyclic Loading Comparison Between Biodegradable Interference Screw Fixation and Biodegradable Double Cross-Pin Fixation of Human Bone-Patellar Tendon-Bone Grafts

      Purpose: The aim of this study was to compare ultimate load, yield load, stiffness, and displacement after cyclic loading of a cross-pin technique and an interference screw technique for the fixation of bone-patellar tendon-bone (BPTB) grafts in anterior cruciate ligament (ACL) reconstruction. Type of Study: Biomechanical in vitro study. Methods: The devices tested were 2 2.7-mm biodegradable pins (RigidFix; Ethicon, Mitek Division, Norderstedt, Germany) and biodegradable interference screws (Absolute; Innovasive Devices, Marlborough, MA). Each device was used for the fixation of 10 8-mm, 9-mm, or 10-mm sized human BPTB grafts in tunnels drilled in bovine knees. Ultimate load, yield load, stiffness, and displacement after cyclic loading (1,000 cycles between 50 and 250 N) were then evaluated. Results: All 8-mm grafts that were fixed with cross-pins failed after a mean of 124 cycles of load. The 9-mm and 10-mm grafts survived the cyclic loading protocol. Yield load and maximum load of the 10-mm groups (cross-pin and interference screw) were significantly higher than that of the 9-mm groups. There was no significant difference in maximum load, yield load, and stiffness between the cross-pin and interference screw fixation technique for 1 graft size. Conclusions: The biomechanical data suggest that femoral fixation of 9-mm and 10-mm BPTB grafts using 2.7-mm biodegradable cross-pins leads to primary stability that is comparable to that of biodegradable interference screws. Fixation of 8-mm BPTB grafts using 2.7-mm biodegradable cross-pins had poor results. Clinical Relevance: The diameter of the bone block is the limiting factor for the final fixation strength and the cyclical survival when using cross-pins. We strongly recommend not using this technique for bone blocks smaller than 9 mm in diameter.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Clancy W.G.
        • Narechania R.G.
        • Rosenberg T.D.
        • Gmeiner J.G.
        • Wisnefske D.D.
        • Lange T.A.
        Anterior and posterior cruciate ligament reconstruction in rhesus monkeys.
        J Bone Joint Surg Am. 1981; 63: 1270-1284
        • Corsetti J.R.
        • Jackson D.W.
        Failure of anterior cruciate ligament reconstruction.
        Clin Orthop. 1996; 325: 42-49
        • Papageorgiou C.D.
        • Ma C.B.
        • Abramowitch S.D.
        • Clineff T.D.
        • Woo S.L.
        A multidisciplinary study of the healing of an intraarticular anterior cruciate ligament graft in a goat model.
        Am J Sports Med. 2001; 29: 620-626
        • Brand J.
        • Weiler A.
        • Caborn D.N.M.
        • Brown C.
        • Johnson D.
        Graft fixation in cruciate ligament reconstruction.
        Am J Sports Med. 2000; 28: 761-773
        • Frank C.B.
        • Jackson D.W.
        The science of reconstruction of the anterior cruciate ligament.
        J Bone Joint Surg Am. 1996; 79: 1556-1576
        • Fu F.H.
        • Bennet C.H.
        • Ma B.
        • Menetrey J.
        • Lattermann C.
        Current trends in anterior cruciate ligament reconstruction. Part II: Operative procedures and clinical correlations.
        Am J Sports Med. 2000; 28: 124-130
        • Brown G.
        • Pena F.
        • Grondtfeld T.
        • Labadie D.
        • Engebretsen L.
        Fixation strength of interference screw fixation in bovine, young human, and elderly human cadaver knees.
        Knee Surg Sports Traumatol Arthrosc. 1996; 3: 238-244
        • Caborn D.N.M.
        • Urban W.P.
        • Johnson D.L.
        Biomechanical comparison between BioScrew and titanium alloy interference screws for bone-patellar tendon graft fixation in anterior cruciate ligament reconstruction.
        Arthroscopy. 1997; 10: 524-529
        • Abate J.A.
        • Fadale P.D.
        • Hustyn M.J.
        • Walsh W.R.
        Initial fixation strength of polylactic acid interference screws in anterior cruciate ligament reconstruction.
        Arthroscopy. 1998; 14: 278-284
        • Hoffmann R.F.G.
        • Peine R.
        • Bail H.
        • Südkamp N.P.
        • Weiler A.
        Initial fixation strength of modified patellar tendon grafts for anatomic fixation in anterior cruciate ligament reconstruction.
        Arthroscopy. 1999; 15: 392-399
        • Weimann A.
        • Zantop T.
        • Rümmler M.
        • Hassenpflug J.
        • Petersen W.
        Primary stability of bone-patellar tendon-bone graft fixation with biodegradable pins.
        Arthroscopy. 2003; 19: 1097-1102
        • Gibson L.
        • Asby M.
        Cancellous bone.
        in: Gibson L. Cellular solids. Pergamon, New York1987: 316-331
        • Kousa P.
        • Jarvinen T.L.
        • Pohjonen T.
        • Kannus P.
        • Jarvinen M.
        Initial fixation strength of biodegradable and titanium screws in anterior ligament reconstruction. Biomechanical evaluation by single cycle and cyclic loading.
        Am J Sports Med. 2001; 29: 420-425
        • Pena F.
        • Grontvedt T.
        • Brown G.A.
        • Aune A.K.
        • Engebretsen L.
        Comparison of failure strength between metallic and absorbable interference screws.
        Am J Sports Med. 1996; 24: 329-334
        • Rupp S.
        • Krauss P.W.
        • Fritsch E.W.
        Fixation strength of a biodegradable interference screw and a press fit technique in anterior cruciate ligament reconstruction with a BPTB graft.
        Arthroscopy. 1997; 13: 61-65
        • Weiler A.
        • Windhagen H.
        • Raschke M.
        • Laumeyer A.
        • Hoffmann R.
        Biodegradable interference screw fixation exhibits pullout force and stiffness similar to titanium screws.
        Am J Sports Med. 1998; 26: 119-128
        • Kousa P.
        • Järvinen T.L.
        • Kannus P.
        • Ahvenjarvi P.
        • Kaikkonen A.
        • Järvinen M.
        A bioabsorbable plug in bone patellar tendon bone reconstruction of the anterior cruciate ligament.
        Arthroscopy. 2001; 17: 144-150
        • Honl M.
        • Carrero V.
        • Hille E.
        • Schneider E.
        • Morlock M.M.
        Bone patellar tendon bone grafts for anterior cruciate ligament reconstruction.
        Am J Sports Med. 2002; 30: 549-557
        • Numazaki H.
        • Tohyama H.
        • Nakano H.
        • Kikuchi S.
        • Yasuda K.
        The effect of initial graft tension in anterior cruciate ligament reconstruction on the mechanical behaviors of the femur-graft-tibia complex during cyclic loading.
        Am J Sports Med. 2002; 30: 800-805
        • Weiler A.
        • Hoffmann R.F.
        • Staehlin A.C.
        • Helling H.J.
        • Südkamp N.P.
        Biodegradable implants in sports medicine.
        Arthroscopy. 2000; 16: 305-321
        • Weiler A.
        • Helling H.J.
        • Kirch U.
        • Zirbes T.K.
        • Rehm K.E.
        Foreign body reaction and the course of osteolysis after polyglycide implants for fracture fixation.
        J Bone Joint Surg Br. 1996; 78: 369-376
        • Beynnon B.D.
        • Amis A.A.
        In vitro testing protocols for the cruciate ligaments and ligament reconstructions.
        Knee Surg Sports Traumatol Arthrosc. 1998; 6: 70-76
        • Markolf K.L.
        • Zemanovic J.R.
        • McAllister D.R.
        Cyclic loading of posterior cruciate ligament replacements fixed with tibial tunnel and tibial inlay methods.
        J Bone Joint Surg Am. 2002; 84: 518-524
        • Giurea M.
        • Zorilla P.
        • Amis A.A.
        Comparative pull-out and cyclic-loading strength tests of anchorage of hamstring tendon grafts in anterior cruciate ligament reconstruction.
        Am J Sports Med. 1999; 27: 621-625
        • Seil R.
        • Rupp S.
        • Krauss P.W.
        Comparison of initial fixation strength between biodegradable and metallic interference screws and a press fit fixation technique in a porcine model.
        Am J Sports Med. 1998; 26: 815-819
        • Kousa P.
        • Järvinen T.
        • Vihavainen M.
        • Kannus P.
        • Järvinen M.
        The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part II: Tibial site.
        Am J Sports Med. 2003; 31: 182-188
        • Morrison J.B.
        Function of the knee joint in normal walking.
        J Biomech. 1970; 3: 51-61
        • Morrison J.B.
        Function of the knee joint various activities.
        Biomed Eng. 1969; 4: 573-580
        • Noyes F.R.
        • Butler D.L.
        • Grood E.S.
        • Zernicke R.F.
        • Hefzy M.S.
        Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions.
        J Bone Joint Surg Am. 1984; 66: 344-350
        • Kousa P.
        • Järvinen T.
        • Vihavainen M.
        • Kannus P.
        • Järvinen M.
        The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part I: Femoral site.
        Am J Sports Med. 2003; 31: 174-181
        • Zantop T.
        • Weimann A.
        • Rümmler M.
        • Hassenpflug J.
        • Petersen W.
        Initial fixation strength of two bioabsorbable pins for the fixation of hamstring grafts compared to interference screw fixation.
        Am J Sports Med. 2004; 32: 641-649