Advertisement
Original Article| Volume 23, ISSUE 4, P381-387, April 2007

Autologous Chondrocyte Implantation in Chondral Defects of the Knee With a Type I/III Collagen Membrane: A Prospective Study With a 3-Year Follow-up

      Purpose: The clinical results after autologous chondrocyte implantation (ACI) with a collagen membrane using sequential objective patient evaluation (clinical examination and magnetic resonance imaging [MRI]) are inadequately reported. This prospective study was performed to determine the results after ACI at different time intervals over a period of 36 months. Methods: Between 2000 and 2002, 63 patients (mean age, 34 years) with full-thickness chondral lesions of the knee underwent an autologous chondrocyte implantation and were evaluated preoperatively and at 6, 18, and 36 months after surgery. The chondrocyte suspension within the defect was covered with a type I/III collagen membrane. Depending on the localization of the defects (femoral condyles, trochlea, and retropatellar), the patients were assigned to three different groups. Exclusion criteria were meniscal pathologies, axial malpositioning, and ligament instabilities. Baseline clinical scores (modified Cincinnati knee score and the International Cartilage Repair Society score) were determined and compared with follow-up data by using the paired Wilcoxon test. Results: The ICRS and modified Cincinnati score showed significant improvement (P < .01) in all time intervals between preoperative and 6, 18, and 36 months after surgery. There was no significant difference in the final outcome between different defect localizations (P > .2). The Pearson coefficient of correlation between clinical and MRI scores was 0.73 and significant at the 0.01 level. There was no patient with a symptomatic graft hypertrophy. Conclusions: ACI is an effective method in the treatment of isolated cartilage defects in the knee. Graft hypertrophy can be avoided by using a collagen membrane. Significant improvement (P < .001) occurs still between 18 and 36 months after surgery. Level of Evidence: Level IV, therapeutic case series.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Steinwachs M.R.
        • Kreuz P.C.
        Clinical results of autologous chondrocyte transplantation (ACT) using a collagen membrane.
        in: Hendrich C. Nöth U. Eulert J. Cartilage surgery and future perspectives. Springer-Verlag, Berlin2003: 37-47
        • Steinwachs M.R.
        • Kreuz P.C.
        Combinations of different cartilage resurfacing techniques.
        Z Orthop. 2003; 141: 625-628
        • Sprague 3rd, N.F.
        Arthroscopic debridement for degenerative knee joint disease.
        Clin Orthop Relat Res. 1981; 160: 118-123
        • Jackson D.W.
        • Simon T.M.
        • Aberman H.M.
        Articular cartilage degeneration: The impact in the new millennium.
        Clin Orthop Relat Res. 2001; 391S: 14-25
        • Moseley J.B.
        • O’Malley K.
        • Peterson N.J.
        • et al.
        A controlled trial of arthroscopic surgery for osteoarthritis of the knee.
        N Engl J Med. 2002; 374: 81-88
        • Pridie K.H.
        A method of resurfacing osteoarthritic knee joints.
        J Bone Joint Surg Br. 1959; 41: 618-619
        • Magnuson P.B.
        Joint debridment surgical treatment of degenerative arthritis.
        Surg Gynecol Obstet. 1941; 73: 1-9
        • Steadman J.R.
        • Rodkey W.G.
        • Briggs K.K.
        Microfracture to treat full-thickness chondral defects: Surgical technique, rehabilitation, and outcomes.
        J Knee Surg. 2002; 15: 170-176
        • Steadman J.R.
        • Briggs K.K.
        • Rodrigo J.J.
        • Kocher M.S.
        • Gill T.J.
        • Rodkey W.G.
        Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up.
        Arthroscopy. 2003; 19: 477-484
        • Steadman J.R.
        • Miller B.S.
        • Karas S.G.
        • Schlegel T.F.
        • Briggs K.K.
        • Hawkins R.J.
        The microfracture technique in the treatment of full-thickness chondral lesions of the knee in National Football League players.
        J Knee Surg. 2003; 16: 83-86
        • Furukawa T.
        • Eyre D.R.
        • Koide S.
        • Glimcher M.J.
        Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee.
        J Bone Joint Surg Am. 1980; 62: 79-89
        • Shapiro F.
        • Koide S.
        • Glimcher M.J.
        Cell origin and differentiation in the repair of full-thickness defects of articular cartilage.
        J Bone Joint Surg Am. 1993; 75: 532-553
      1. Nehrer S, Dorotka R, Bindreiter U, et al. Microfracture in the treatment of chondral defects in a sheep model. Abstract book of the 5th symposium of the International Cartilage Repair Society in Gent, Belgium. Bologna, Italy: Medimond International Proceedings, 2004;42.

        • Dorotka R.
        • Bindreiter U.
        • Macfelda K.
        • Windberger U.
        • Nehrer S.
        Marrow stimulation and chondrocyte transplantation using a collagen matrix for cartilage repair.
        Osteoarthritis Cartilage. 2005; 13: 655-664
        • Kutsen G.
        • Engebretsen L.
        • Ludvigsen T.C.
        • et al.
        Autologous chondrocyte implantation compared with microfracture in the knee.
        J Bone Joint Surg Am. 2004; 86: 455-464
        • Brittberg M.
        • Lindahl A.
        • Nilsson A.
        • Ohlsson C.
        • Isaksson O.
        • Peterson L.
        Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation.
        N Engl J Med. 1994; 331: 889-895
        • Kreuz P.C.
        • Steinwachs M.
        • Edlich M.
        • et al.
        The anterior approach for the treatment of posterior osteochondral lesions of the talus: Comparison of different surgical techniques.
        Arch Orthop Trauma Surg. 2006; 126: 241-246
        • Bobic V.
        Autologous osteochondral transplantation in the treatment of chondral defects.
        Orthopade. 1999; 28: 19-25
        • Kreuz P.C.
        • Steinwachs M.
        • Erggelet C.
        • Lahm A.
        • Henle P.
        • Niemeyer P.
        Mosaicplasty with autologous talar autograft for osteochondral lesions of the talus after failed primary arthroscopic management: A prospective study with a 4-year follow-up.
        Am J Sports Med. 2006; 34: 55-63
        • Hangody L.
        • Kish G.
        • Karpati Z.
        • Szerb I.
        • Udvarhelyi I.
        Arthroscopic autogenous osteochondral mosaicplasty for the treatment of femoral condylar articular defects.
        Knee Surg Sports Traumatol Arthrosc. 1997; 5: 262-267
        • Attmanspacher W.
        • Dittrich V.
        • Stedtfeld H.
        Experiences with arthroscopic therapy of chondral and osteochondral defects of the knee joint with OATS (Osteochondral Autograft Transfer System).
        Zentralbl Chir. 2000; 125: 494-499
        • Jakob R.P.
        • Franz T.
        • Gautier E.
        • Mainil-Varlet P.
        Autologous osteochondral grafting in the knee: Indication, results, and reflections.
        Clin Orthop Relat Res. 2002; 401: 170-184
        • Bentley G.
        • Biant C.L.
        • Carrington W.J.
        • et al.
        A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee.
        J Bone Joint Surg Br. 2003; 85: 223-230
        • Horas U.
        • Pelinkovic D.
        • Herr G.
        • Aigner T.
        • Schnettler R.
        Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint.
        J Bone Joint Surg Am. 2003; 85: 185-192
        • Peterson L.
        • Minas T.
        • Brittberg L.
        • Nilsson A.
        • Sjögren-Jansson E.
        • Lindahl A.
        Two- to 9-year outcome after autologous chondrocyte transplantation of the knee.
        Clin Orthop Relat Res. 2000; 5: 212-234
        • Peterson L.
        • Brittberg M.
        • Kiviranta I.
        • Akerlund E.L.
        • Lindahl A.
        Autologous chondrocyte transplantation, biomechanics and long-term durability.
        Am J Sports Med. 2002; 30: 2-12
        • Vasara A.I.
        • Nieminen M.T.
        • Jurvelin J.S.
        • Peterson L.
        • Lindahl A.
        • Kiviranta I.
        Indentation stiffness of repair tissue after autologous chondrocyte transplantation.
        Clin Orthop Relat Res. 2005; 433: 233-242
        • Peterson L.
        • Minas T.
        • Brittberg M.
        • Lindahl A.
        Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: Results at two to ten years.
        J Bone Joint Surg Am. 2003; 85: 17-24
        • Hunziker E.B.
        Articular cartilage repair: Basic science and clinical progress.
        Osteoarthritis Cartilage. 2002; 10: 432-463
        • Henderson I.
        • Tuy B.
        • Oakes B.
        Reoperation after autologous chondrocyte implantation.
        J Bone Joint Surg Br. 2004; 86: 205-211
        • Micheli L.J.
        • Browne J.E.
        • Erggelet C.
        • et al.
        Autologous chondrocyte implantation of the knee: Multicenter experience and minimum 3-year follow-up.
        Clin J Sport Med. 2001; 10: 223-228
        • Outerbridge R.E.
        The etiology of chondromalacia patellae.
        J Bone Joint Surg Br. 1961; 43: 752-757
        • Noyes F.R.
        • McGinniss G.H.
        • Grood E.S.
        The variable functional disability of the anterior cruciate ligament-deficient knee.
        Orthop Clin North Am. 1985; 16: 47-67
        • Brittberg M.
        • Aglietti P.
        • Gambardella R.
        • et al.
        The ICRS clinical cartilage injury evaluation system–2000. 2000 (3rd ICRS Meeting, Göteborg, Sweden, April 27-28)
        • Henderson I.J.P.
        • Tuy B.
        • Connell D.
        • Oakes B.
        • Hettwer W.H.
        Prospective clinical study of autologous chondrocyte implantation and correlation with MRI at three and 12 months.
        J Bone Joint Surg Br. 2003; 85: 1060-1066
        • Fuss M.
        • Ehlers E.M.
        Characteristics of human chondrocytes, osteoblasts and fibroblasts seeded onto a type I / III collagen sponge under different culture conditions.
        Ann Anat. 2000; 182: 303-310
        • Rodrigo J.J.
        • Steadman J.R.
        • Silliman J.F.
        • Fulstone H.A.
        Improvement in full-thickness chondral defect healing in the human knee after debridement and microfracture using continuous passive motion.
        Am J Knee Surg. 1994; 7: 109-116
        • Hosmer D.W.
        • Lemeshow S.
        Applied logistic regression. John Wiley, New York1989: 106-143
        • Haddo O.
        • Mahroof S.
        • Higgs D.
        • et al.
        The use of chondrogide membrane in autologous chondrocyte implantation.
        Knee. 2004; 11: 51-55
        • Bartlett W.
        • Skinner J.A.
        • Gooding C.R.
        • et al.
        Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: A prospective, randomised study.
        J Bone Joint Surg Br. 2005; 87: 640-645