Original Article| Volume 23, ISSUE 4, P411-419.e1, April 2007

Anterior Cruciate Ligament Reconstruction With a Porcine Xenograft: A Serologic, Histologic, and Biomechanical Study in Primates

      Purpose: This study proposes treatment methods to provide a mechanically competent, immunocompatible, and sterile porcine graft for human knee ligament reconstruction. Methods: The anterior cruciate ligament (ACL) was reconstructed by using treated porcine patellar tendon grafts or controls of untreated porcine grafts or allografts in 20 rhesus monkeys. Animals were stratified into 2-, 6-, and 12-month postreconstruction cohorts. Serologic and histologic assessments were performed to evaluate host immunological and cellular response. Healing and functional integrity of the ACL reconstructions were assessed by tensile biomechanical testing. Results: Untreated porcine grafts were acutely resorbed and rejected, whereas treated porcine grafts and allografts were incorporated by the host as functional grafts. Temporal histologic assessment of treated porcine grafts and rhesus grafts revealed gradual host cellular infiltration and graft collagen remodeling through a similar mechanism of ligamentization. Biomechanical evaluations support graft functional integration with no difference between allograft and treated graft reconstructions. Conclusion: Rhesus allograft and treated porcine grafts presented with similar healing profiles in a long-term evaluation of ACL reconstruction. Clinical Relevance: Immunochemical modification and sterilization of porcine patellar tendon grafts may improve initial biocompatibility and long-term functionality of xenografts in musculoskeletal applications.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Butler D.L.
        Anterior cruciate ligament: Its normal response and replacement.
        J Orthop Res. 1989; 7: 910-921
        • Frank C.
        • Ameil D.
        • Woo S.
        • et al.
        Normal ligament properties and ligament healing.
        Clin Orthop Relat Res. 1985; 196: 15-25
        • Noyes F.R.
        • Mooar L.A.
        • Moorman 3rd, C.T.
        • et al.
        Partial tears of the anterior cruciate ligament.
        J Bone Joint Surg Br. 1989; 71: 825-833
        • Strickland S.M.
        • MacGillivray J.D.
        • Warren R.F.
        Anterior cruciate ligament reconstruction with allograft tendons.
        Orthop Clin North Am. 2003; 34: 41-47
        • Christen B.
        • Jakob R.P.
        Fractures associated with patellar ligament grafts in cruciate ligament surgery.
        J Bone Joint Surg Am. 1992; 74: 617-619
        • Kohn D.
        • Sander-Beuermann A.
        Donor-site morbidity after harvest of a bone-tendon-bone patellar tendon autograft.
        Knee Surg Sports Traumatol Arthrosc. 1994; 2: 219-223
        • Kainer M.A.
        • Linden J.V.
        • Whaley D.N.
        • et al.
        Clostridium infections associated with musculoskeletal-tissue allografts.
        N Engl J Med. 2004; 350: 2564-2571
        • Rihn J.A.
        • Harner C.D.
        The use of musculoskeletal allograft tissue in knee surgery.
        Arthroscopy. 2003; 19: 51-66
        • Bolton C.W.
        • Bruchman W.C.
        The GORE-TEX expanded polytetrafluoroethylene prosthetic ligament.
        Clin Orthop Relat Res. 1985; 196: 202-213
        • Lukianov A.V.
        • Richmond J.C.
        • Barrett G.R.
        • et al.
        A multicenter study on the results of anterior cruciate ligament reconstruction using a Dacron ligament prosthesis in “salvage” cases.
        Am J Sports Med. 1989; 17: 380-385
        • Schindhelm K.
        • Rogers G.J.
        • Milthorpe B.K.
        • et al.
        Autograft and Leeds-Keio reconstructions of the ovine anterior cruciate ligament.
        Clin Orthop Relat Res. 1991; 267: 278-293
        • Weiss A.B.
        • Blazina M.E.
        • Goldstein A.R.
        • et al.
        Ligament replacement with an absorbable copolymer carbon fiber scaffold—Early clinical experience.
        Clin Orthop Relat Res. 1985; 196: 77-85
        • Margevicius K.J.
        • Claes L.
        • Durselen L.
        • et al.
        Identification and distribution of synthetic ligament wear particles in sheep.
        J Biomed Mater Res. 1996; 31: 319-328
        • Teitge R.A.
        Bovine xenograft reconstruction of the ACL.
        in: Feagin J.A. The Crucial Ligaments. Churchill Livingstone Inc, New York, NY1988: 529-534
        • Galili U.
        Interaction of the natural anti-Gal antibody with μ galactosyl epitopes: A major obstacle for xenotransplantation in humans.
        Immunol Today. 1993; 14: 480-482
        • Galili U.
        • Swanson K.
        Gene sequences suggest inactivation of a-1,3-galactosyltransferase in catarrhines after the divergence of apes from monkeys.
        Proc Natl Acad Sci U S A. 1991; 88: 7401-7404
        • Galili U.
        • LaTemple D.C.
        • Walgenbach A.W.
        • et al.
        Porcine and bovine cartilage transplants in cynomolgus monkey: I.
        Transplantation. 1997; 63: 640-645
        • Galili U.
        • LaTemple D.C.
        • Walgenbach A.W.
        • et al.
        Porcine and bovine cartilage transplants in cynomolgus monkey: II.
        Transplantation. 1997; 63: 646-651
        • Stone K.R.
        • Ayala G.
        • Goldstein J.
        • et al.
        Porcine cartilage transplants in cynomolgus monkey: III.
        Transplantation. 1998; 65: 1577-1583
        • McPherson T.B.
        • Liang H.
        • Record R.D.
        • et al.
        Gal alpha(1,3)Gal epitope in porcine small intestinal submucosa.
        Tissue Eng. 2000; 6: 233-239
        • Fideler B.M.
        • Vangsness Jr, C.T.
        • Lu B.
        • et al.
        Gamma irradiation: Effects on biomechanical properties of human bone-patellar tendon-bone allografts.
        Am J Sports Med. 1995; 23: 643-646
        • Schwartz H.E.
        • Matava M.J.
        • Proch F.S.
        • et al.
        The effect of gamma irradiation on anterior cruciate ligament allograft biomechanical and biochemical properties in the Caprine Model at time zero and at 6 months after surgery.
        Am J Sports Med. 2006; 11: 1747-1755
        • Amiel D.
        • Kleiner J.B.
        • Roux R.D.
        • et al.
        The phenomenon of “ligamentization”: Anterior cruciate ligament reconstruction with autogenous patellar tendon.
        J Orthop Res. 1986; 4: 162-172
        • Johnson L.L.
        The outcome of a free autogenous semitendinosus tendon graft in human anterior cruciate reconstructive surgery: A histologic study.
        Arthroscopy. 1993; 9: 131-142
        • Malinin T.I.
        • Levitt R.L.
        • Bashore C.
        • et al.
        A study of retrieved allografts used to replace anterior cruciate ligaments.
        Arthroscopy. 2002; 18: 163-170
        • Rougraff B.
        • Shelbourne K.D.
        • Gerth P.K.
        • et al.
        Arthroscopic and histologic analysis of human patellar tendon autografts used for anterior cruciate ligament reconstruction.
        Am J Sports Med. 1993; 21: 277-284
        • Butler D.L.
        • Grood E.S.
        • Noyes F.R.
        • et al.
        Mechanical properties of primate vascularized vs. nonvascularized patellar tendon grafts: Changes over time.
        J Orthop Res. 1989; 7: 68-79
        • Clancy Jr, W.G.
        • Narechania R.G.
        • Rosenberg T.D.
        • et al.
        Anterior and posterior cruciate ligament reconstruction in rhesus monkeys.
        J Bone Joint Surg Am. 1981; 63: 1270-1284
        • Noyes F.R.
        • Grood E.S.
        The strength of anterior cruciate ligaments in humans and rhesus monkeys.
        J Bone Joint Surg Am. 1976; 58: 1074-1082
        • Lyons R.M.
        • Woo S.L.
        • Hollis J.M.
        • et al.
        A new device to measure the structural properties of the femur-anterior ligament-tibia complex.
        Trans ASME. 1989; 111: 350-354
        • Woo S.L.
        • Hollis J.M.
        • Roux R.D.
        • et al.
        Effects of knee flexion on the structural properties of the rabbit femur-anterior cruciate ligament-tibia complex (FATC).
        J Biomech. 1987; 20: 557-563
        • Woo S.L.
        • Hollis J.M.
        • Adams D.J.
        • et al.
        Tensile properties of the human femur-anterior cruciate ligament-tibia complex.
        Am J Sports Med. 1991; 19: 217-225
        • Ballock R.T.
        • Woo S.L.
        • Lyon R.M.
        • et al.
        Use of patellar tendon autograft for anterior cruciate ligament reconstruction in the rabbit: A long-term histologic and biomechanical study.
        J Orthop Res. 1989; 7: 474-485
        • Jackson D.W.
        • Grood E.S.
        • Goldstein J.D.
        • et al.
        A comparison of patellar tendon autograft and allograft used for anterior cruciate ligament reconstruction in the goat.
        Am J Sports Med. 1993; 21: 176-184