Comparison of Poly-L-Lactide and Polylactide Carbonate Interference Screws in an Ovine Anterior Cruciate Ligament Reconstruction Model

      Purpose: The purpose of this study was to compare polylactide carbonate (PLC) interference screws with poly-L-lactide (PLLA) screws in an ovine anterior cruciate ligament reconstruction model. Methods: A PLC screw or PLLA screw was placed in the center of a 4-strand soft-tissue autograft fixating the graft within the tibial tunnel. Assessments were made at 6 and 12 weeks for fixation strength and at time points of 6, 12, 26, and 52 weeks via computed tomography and histology. Results: No adverse or inflammatory reactions were noted for either material at any time point. Mechanical fixation strength increased from 6 to 12 weeks for both the PLC and PLLA screws, with no significant differences in fixation strength being found between the 2 groups. By 26 weeks, the PLC screw was partially replaced by new bone, a process that was completed by 52 weeks. The PLLA screws were intact and surrounded by a fibrous layer at 52 weeks with no obvious resorption. New bone formation within the tendon construct located in the bone tunnel proximal to the interference screw was also noted in the PLC screw group but was not observed in the PLLA group. Conclusions: This study has supported the hypothesis that this bioabsorbable composite has sufficient mechanical properties and strength retention to function successfully as an interference screw but also stimulates a biologic healing response, enabling replacement by bone and tunnel healing. Clinical Relevance: This study shows both the satisfactory mechanical characteristics and osteoconductive nature of PLC used in an interference screw in an ovine anterior cruciate ligament reconstruction model.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Abate J.
        • Fadale P.
        • Hulstyn M.
        • Walsh W.
        Initial fixation strength of polylactic acid interference screws in anterior cruciate ligament reconstruction.
        Arthroscopy. 1998; 14: 278-284
        • Rupp S.
        • Krauss P.
        • Fritsch E.
        Fixation strength of a biodegradable interference screw and a press-fit technique in anterior cruciate ligament reconstruction with a BPTB graft.
        Arthroscopy. 1997; 13: 61-65
        • Weiler A.
        • Windhagen H.
        • Raschke M.
        • Laumeyer A.
        • Hoffmann R.
        Biodegradable interference screw fixation exhibits pull-out force and stiffness similar to titanium screws.
        Am J Sports Med. 1998; 26: 119-126
        • Weiler A.
        • Peine R.
        • Pashmineh-Azar A.
        • Abel C.
        • Sudkamp N.
        • Hoffmann R.
        Tendon healing in a bone tunnel.
        Arthroscopy. 2002; 18: 113-123
        • Weiler A.
        • Hoffmann R.
        • Siepe C.
        • Kolbeck S.
        • Sudkamp N.
        The influence of screw geometry on hamstring tendon interference fit fixation.
        Am J Sports Med. 2000; 28: 356-359
        • Barber F.
        Poly-D,L-lactide interference screws for anterior cruciate ligament reconstruction.
        Arthroscopy. 2005; 21: 804-808
        • Bostman O.M.
        • Laitinen O.M.
        • Tynninen O.
        • Salminen S.T.
        • Pihlajamaki H.K.
        Tissue restoration after resorption of polyglycolide and poly-laevo-lactic acid screws.
        J Bone Joint Surg Br. 2005; 87: 1575-1580
        • Walton M.
        • Cotton N.J.
        Long-term in vivo degradation of poly-L-lactide (PLLA) in bone.
        J Biomater Appl. 2007; 21: 395-411
        • Lajtai G.
        • Schmiedhuber G.
        • Unger F.
        • et al.
        Bone tunnel remodeling at the site of biodegradable interference screws used for anterior cruciate ligament reconstruction: 5-year follow-up.
        Arthroscopy. 2001; 17: 597-602
        • Andriano K.
        • Pohjonen T.
        • Tormala P.
        Processing and characterization of absorbable polylactide polymers for use in surgical implants.
        J Appl Biomater. 1994; 5: 133-140
        • Balch O.
        • Collier M.
        • De B.L.
        • Johnson L.
        Bioabsorbable suture anchor (co-polymer 85/15 D,L lactide/glycolide) implanted in bone: Correlation of physical/mechanical properties, magnetic resonance imaging, and histological response.
        Arthroscopy. 1999; 15: 691-708
        • Lajtai G.
        • Balon R.
        • Humer K.
        • Aitzetmuller G.
        • Unger F.
        • Orthner E.
        Resorbable interference screws.
        Unfallchirurg. 1998; 101: 866-869
        • Kasuga T.
        • Maeda H.
        • Kato K.
        • Nogami M.
        • Hata K.
        • Ueda M.
        Preparation of poly(lactic acid) composites containing calcium carbonate (vaterite).
        Biomaterials. 2003; 24: 3247-3253
        • Ara M.
        • Wantanabe M.
        • Imai Y.
        Effect of blending calcium compounds on hydrolytic degradation of poly(DL-lactic acid-co-glycolic acid).
        Biomaterials. 2002; 23: 2479-2483
        • Li S.
        • Vert M.
        Hydrolytic degradation of the coral/poly(DL-lactic acid) bioabsorbable material.
        J Biomaterial Sci Polym Ed. 1996; 7: 817-827
        • Agrawal C.M.
        • Athanasiou K.A.
        Technique to control pH in vicinity of biodegrading PLA-PGA implants.
        J Biomed Mater Res. 1997; 38: 105-114
        • Schiller C.
        • Epple M.
        Carbonated calcium phosphates are suitable pH-stabilising fillers for biodegradable polyesters.
        Biomaterials. 2003; 24: 2037-2043
        • Shors E.C.
        Coralline bone graft substitutes.
        Orthop Clin North Am. 1999; 30: 599-613
        • Walsh W.R.
        • Chapman-Sheath P.J.
        • Cain S.
        • et al.
        A resorbable porous ceramic composite bone graft substitute in a rabbit metaphyseal defect model.
        J Orthop Res. 2003; 21: 655-661
        • Neo M.
        • Nakamura T.
        • Ohtsuki C.
        • Kokubo T.
        • Yamamuro T.
        Apatite formation on three kinds of bioactive material at an early stage in vivo: A comparative study by transmission electron microscopy.
        J Biomed Mater Res. 1993; 27: 999-1006
        • Kokubo T.
        Apatite formation on surfaces of ceramics, metals and polymers in body fluid.
        Acta Mater. 1998; 46: 2519-2527
        • Doi Y.
        • Shibutani T.
        • Moriwaki Y.
        • Kajimoto T.
        • Iwayama Y.
        Sintered carbonate apatites as bioresorbable bone substitutes.
        J Biomed Mater Res. 1998; 39: 603-610
        • Pabbruwe M.B.
        • Standard O.C.
        • Sorrell C.C.
        • Howlett C.R.
        Bone formation with alumina tubes: Effect of calcium manganese and chromium dopants.
        Biomaterials. 2004; 25: 4901-4910
        • Datta H.K.
        • MacIntyre I.
        • Zaidi M.
        The effect of extracellular calcium elevation on morphology and function of isolated rat osteoclasts.
        Biosci Rep. 1989; 9: 747-751
        • Zaidi M.
        • Moonga B.S.
        • Huang C.L.
        Calcium sensing and cell signaling processes in the local regulation of osteoclastic bone resorption.
        Biol Rev Camb Philos Soc. 2004; 79: 79-100
        • Walsh W.R.
        • Stephens P.
        • Huckle J.
        • Vizesi F.
        • Bruce W.
        • Yu Y.
        Effects of low-intensity pulsed ultrasound on tendon-bone healing in an intra-articular sheep knee model.
        Arthroscopy. 2007; 23: 197-204
        • Rogers G.J.
        • Milthorpe B.K.
        • Muratore A.
        • Schindhelm K.
        Measurement of the mechanical properties of the ovine anterior cruciate ligament bone-ligament-bone complex: A basis for prosthetic evaluation.
        Biomaterials. 1990; 11: 89-96
        • Rodeo S.A.
        • Arnoczky S.P.
        • Torzilli P.A.
        • Hidaka C.
        • Warren R.
        Tendon healing in a bone tunnel.
        J Bone Joint Surg Am. 1993; 75: 1795-1803
        • Grana W.A.
        • Davis M.D.
        • Egle M.
        • Mahnken R.
        • Goodhart C.W.
        An analysis of autograft fixation after anterior cruciate ligament reconstruction in a rabbit model.
        Am J Sports Med. 1994; 22: 344-351
        • Kurosaka M.
        • Yoshiya S.
        • Andrish J.
        A biomechanical comparison of different surgical techniques of graft fixation in anterior cruciate ligament reconstruction.
        Am J Sports Med. 1987; 15: 225-229
        • Weiler A.
        • Hoffmann R.
        • Bail H.
        • Rehm O.
        • Sudkamp N.
        Tendon healing in a bone tunnel.
        Arthroscopy. 2002; 18: 124-135
        • Kousa P.
        • Jarvinen T.
        • Pohjonen T.
        • Kannus P.
        • Kotikoski M.
        • Jarvinen M.
        Fixation strength of a biodegradable screw in anterior cruciate ligament reconstruction.
        J Bone Joint Surg Br. 1995; 77: 901-905
      1. Rosato D.V. Rosato’s plastics encyclopedia and dictionary. Hanser, New York1993
        • Godwin S.L.
        • Soltoff S.P.
        Extracellular calcium and platelet-derived growth factor promote receptor-mediated chemotaxis in osteoblasts through different signaling pathways.
        J Biol Chem. 1997; 272: 11307-11312
        • Yamaguchi T.
        • Chattopadhyay N.
        • Kifor O.
        • Butters Jr, R.R.
        • Sugimoto T.
        • Brown E.M.
        Mouse osteoblastic cell line (MC3T3-E1) expresses extracellular calcium (Ca2+o)-sensing receptor and its agonists stimulate chemotaxis and proliferation of MC3T3-E1 cells.
        J Bone Miner Res. 1998; 13: 1530-1538