Original Article| Volume 25, ISSUE 9, P996-1005, September 2009

Microporous Pure β–Tricalcium Phosphate Implants for Press-Fit Fixation of Anterior Cruciate Ligament Grafts: Strength and Healing in a Sheep Model


      A sheep study was conducted to test a press-fit technique using microporous pure β–tricalcium phosphate (β-TCP) dowels for fixation of the anterior cruciate ligament (ACL) graft.


      Microporous (5 μm) cylindrical plugs of β-TCP (diameter, 7 mm; length, 25 mm) with interconnecting pores were used. The material featured a novel configuration of structure and surface geometry. Implants were tested by use of press-fit fixation of ACL grafts with and without bone blocks in 42 sheep over a period of 24 weeks. Biomechanical, radiologic, histologic, and immunohistochemical evaluations were performed.


      In load-to-failure tests at 6, 12, and 24 weeks after surgery, the intra-articular graft always failed, not the fixation. Grafts showed bony fixation in the tunnel at 6 weeks and primary healing at the junction of the tunnel and joint after 24 weeks. Tricalcium phosphate was resorbed and simultaneously replaced by bone. Remodeling was still incomplete at 24 weeks.


      In the sheep model microporous β-TCP implants used with press-fit fixation of ACL grafts permit early functional rehabilitation. After 6 weeks, the graft is fixed by woven bone or bony integration. Implanted microporous tricalcium phosphate is resorbed and replaced by bone.

      Clinical Relevance

      In a sheep model we showed that primary healing of ACL grafts with resorption and bony replacement of the fixating implant can be achieved by means of press-fit fixation with pure β-TCP.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Kousa P.
        • Jarvinen T.L.
        • Vihavainen M.
        • Kannus P.
        • Jarvinen M.
        The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction.
        Am J Sports Med. 2003; 31: 182-188
        • Barrett G.R.
        • Noojin F.K.
        • Hartzog C.W.
        • Nash C.R.
        Reconstruction of the anterior cruciate ligament in females: A comparison of hamstring versus patellar tendon autograft.
        Arthroscopy. 2002; 18: 46-54
        • Scheffler S.U.
        • Südkamp N.P.
        • Gockenjan A.
        • Hoffmann R.F.
        • Weiler A.
        Biomechanical comparison of hamstring and patellar tendon graft anterior cruciate ligament reconstruction techniques: The impact of fixation level and fixation method under cyclic loading.
        Arthroscopy. 2002; 18: 304-315
        • Fink C.
        • Benedetto K.P.
        • Hackl W.
        • Hoser C.
        • Freund M.C.
        • Rieger M.
        Bioabsorbable polyglyconate interference screw fixation in anterior cruciate ligament reconstruction: A prospective computed tomography-controlled study.
        Arthroscopy. 2000; 16: 491-498
        • Choi N.H.
        • Lee J.H.
        • Victoroff B.N.
        Do broken cross-pins compromise stability after anterior cruciate ligament reconstructions with hamstring tendons?.
        Arthroscopy. 2007; 23: 1334-1340
        • Boszotta H.
        Arthroscopic reconstruction of anterior cruciate ligament using BTB patellar ligament in the press-fit technique.
        Surg Technol Int. 2003; 11: 249-253
        • Musahl V.
        • Abramowitch S.D.
        • Gabriel M.T.
        • et al.
        Tensile properties of an anterior cruciate ligament graft after bone-patellar tendon-bone press-fit fixation.
        Knee Surg Sports Traumatol Arthrosc. 2003; 11: 68-74
        • Hunt P.
        • Scheffler S.U.
        • Unterhauser F.N.
        • Weiler A.
        A model of soft-tissue graft anterior cruciate ligament reconstruction in sheep.
        Arch Orthop Trauma Surg. 2005; 125: 238-248
        • Rahn B.A.
        Die polychrome Sequenzmarkierung des Knochens.
        Nova Acta Leopold. 1976; 44: 249-255
        • Reichel H.
        Der diaphysaere Knochen nach Kallusdistraktion: Densitometrische, biomechanische und histologische Untersuchungen zur operativen Beinverlaengerung.
        Zuckschwerdt, Munich1998
        • Kellgren J.H.
        • Lawrence J.S.
        Radiological assessment of osteoarthrosis.
        Ann Rheum Dis. 1957; 16: 494-502
        • Claes L.
        Empfehlung für tierexperimentelle Untersuchungen zum Bandersatz.
        Hefte Unfallchirurg. 1994; 234: 206-210
        • Dürselen L.
        • Häfner M.
        • Ignatius A.
        • et al.
        Biological response to a new composite polymer augmentation device used for cruciate ligament reconstruction.
        J Biomed Mater Res B Appl Biomater. 2006; 76: 265-272
        • Donath K.
        Die Trenn-Dünnschliff-Technik zur Herstellung histologischer Präparate von nicht schneidbaren Geweben und Materialien.
        in: Exakt-Kulzer-Druckschrift, Norderstedt1988: 1-16
        • Jansen J.A.
        • Dhert W.J.
        • van der Waerden J.P.
        • von Recum A.F.
        Semi-quantitative and qualitative histologic analysis method for the evaluation of implant biocompatibility.
        J Invest Surg. 1994; 7: 123-134
        • Dhert W.J.
        • Thomsen P.
        • Blomgren A.K.
        • Esposito M.
        • Ericson L.E.
        • Verbout A.J.
        Integration of press-fit implants in cortical bone: A study on interface kinetics.
        J Biomed Mater Res. 1998; 41: 574-583
        • Schilling A.F.
        • Linhart W.
        • Filke S.
        • et al.
        Resorbability of bone substitute biomaterials by human osteoclasts.
        Biomaterials. 2004; 25: 3963-3972
        • Polak J.M.
        • Van Noorden S.
        Introduction to immunocytochemistry.
        Ed 3. BIOS Scientific Publishers, Oxford2003
        • Schumacher M.
        • Schulgen G.
        Methodik klinischer Studien: Methodische Grundlagen der Planung, Durchführung und Auswertung.
        Springer, Berlin2002
        • Tecklenburg K.
        • Burkart P.
        • Hoser C.
        • Rieger M.
        • Fink C.
        Prospective evaluation of patellar tendon graft fixation in anterior cruciate ligament reconstruction comparing composite bioabsorbable and allograft interference screws.
        Arthroscopy. 2006; 22: 993-999
        • Barber F.A.
        • Dockery W.D.
        Long-term absorption of beta-tricalcium phosphate poly-L-lactic acid interference screws.
        Arthroscopy. 2008; 24: 441-447
        • Barber F.A.
        Poly-D,L-lactide interference screws for anterior cruciate ligament reconstruction.
        Arthroscopy. 2005; 21: 804-808
        • Mayr H.O.
        • Hube R.
        • Bernstein A.
        • Seibt A.B.
        • Hein W.
        • von Eisenhart-Rothe R.
        Beta-tricalcium phosphate plugs for press-fit fixation in ACL reconstruction—A mechanical analysis in bovine bone.
        Knee. 2007; 14: 239-244
        • Buser D.
        • Hoffmann B.
        • Bernard J.P.
        • Lussi A.
        • Mettler D.
        • Schenk R.K.
        Evaluation of filling materials in membrane-protected bone defects.
        Clin Oral Implants Res. 1998; 9: 137-150
        • Bohner M.
        Physical and chemical aspects of calcium phosphates used in spinal surgery.
        Eur Spine J. 2001; 10: 14-21
        • Bohner M.
        • Baumgart F.
        Effects of geometrical factors on the resorption of calcium phosphate bone substitutes.
        Biomaterials. 2004; 25: 3569-3582
        • Bohner M.
        • van Lenthe G.H.
        • Gruenenfelder S.
        • Hirsiger W.
        • Evison R.
        • Müller R.
        Synthesis and characterization of porous beta-tricalcium phosphate blocks.
        Biomaterials. 2005; 26: 6099-6105
        • Weiler A.
        • Peine R.
        • Pashmineh-Azar A.
        • Abel C.
        • Sudkamp N.P.
        • Hoffmann R.F.
        Tendon healing in a bone tunnel.
        Arthroscopy. 2002; 18: 113-123
        • von Doernberg M.C.
        • von Rechenberg B.
        • Bohner M.
        • et al.
        In vivo behavior of calcium phosphate scaffolds with four different pore sizes.
        Biomaterials. 2006; 27: 5186-5198
        • Uchida A.
        • Nade S.M.
        • McCartney E.R.
        • Ching W.
        The use of ceramics for bone replacement.
        J Bone Joint Surg Br. 1984; 66: 269-275
        • Walsh W.R.
        • Vizesi F.
        • Michael D.
        • et al.
        Beta-TCP bone graft substitutes in a bilateral rabbit tibial defect model.
        Biomaterials. 2008; 29: 266-271
        • Mayr H.O.
        • Beck T.
        • Hube R.
        • et al.
        Axial load in case of press-fit fixation of the ACL graft—A fundamental study.
        Z Orthop Ihre Grenzgeb. 2005; 143 (in German): 556-560
        • Koepp H.E.
        • Schorlemmer S.
        • Kessler S.
        • et al.
        Biocompatibility and osseointegration of beta-TCP: Histomorphological and biomechanical studies in a weight-bearing sheep model.
        J Biomed Mater Res B Appl Biomater. 2004; 70: 209-217
        • Papageorgiou C.D.
        • Ma C.B.
        • Abramowitch S.D.
        • Clineff T.D.
        • Woo S.L.
        A multidisciplinary study of the healing of an intraarticular anterior cruciate ligament graft in a goat model.
        Am J Sports Med. 2001; 29: 620-626
        • Weiler A.
        • Hoffmann R.F.
        • Bail H.J.
        • Rehm O.
        • Sudkamp N.P.
        Tendon healing in a bone tunnel.
        Arthroscopy. 2002; 18: 124-135
        • Weiler A.
        • Unterhauser F.
        • Faensen B.
        • Hunt P.
        • Bail H.
        • Haas N.
        Comparison of tendon-to-bone healing using extracortical and anatomic interference fit fixation of soft tissue grafts in a sheep model of ACL reconstruction.
        Trans Orthop Res Soc. 2002; 48: 317
        • Hunt P.
        • Rehm O.
        • Weiler A.
        Soft tissue graft interference fit fixation: Observations on graft insertion site healing and tunnel remodeling 2 years after ACL reconstruction in sheep.
        Knee Surg Sports Traumatol Arthrosc. 2006; 14: 1245-1251
        • Weiss J.A.
        • Woo S.L.
        • Ohland K.J.
        • Horibe S.
        • Newton P.O.
        Evaluation of a new injury model to study medial collateral ligament healing: Primary repair versus nonoperative treatment.
        J Orthop Res. 1991; 9: 516-528
        • Theiss F.
        • Apelt D.
        • Brand B.
        • et al.
        Biocompatibility and resorption of a brushite calcium phosphate cement.
        Biomaterials. 2005; 26: 4383-4394
        • Pendegrass C.J.
        • Oddy M.J.
        • Cannon S.R.
        • Briggs T.
        • Goodship A.E.
        • Blunn G.W.
        A histomorphological study of tendon reconstruction to a hydroxyapatite-coated implant: Regeneration of a neo-enthesis in vivo.
        J Orthop Res. 2004; 22: 1316-1324
        • Scheffler S.
        • Chwastek H.
        • Schonfelder V.
        • Unterhauser F.
        • Hunt P.
        • Weiler A.
        The impact of radiofrequency shrinkage on the mechanical and histologic properties of the elongated anterior cruciate ligament in a sheep model.
        Arthroscopy. 2005; 21: 923-933
        • Heller M.O.
        • Duda G.N.
        • Ehrig R.M.
        • Schell H.
        • Seebeck P.
        • Taylor W.R.
        Muskuloskeletale Belastungen im Schafshinterlauf: Mechanische Rahmenbedingungen der Heilung.
        Materwiss Werksttech. 2005; 36: 775-780
        • Haefner M.
        Die augmentierte Kreuzbandnaht.
        Chirurgische Tierklinik der Tieraerztlichen Fakultaet der Ludwig-Maximilians-Universitaet Muenchen, dissertation, Munich2004