Original Article| Volume 28, ISSUE 9, P1275-1282, September 2012

Bipolar Radiofrequency Plasma Ablation Induces Proliferation and Alters Cytokine Expression in Human Articular Cartilage Chondrocytes


      The aim of the study was to determine the in vitro effects of plasma-mediated bipolar radiofrequency ablation on human chondrocyte compensatory proliferation and inflammatory mediator expression.


      Human articular cartilage biopsy specimens, from total knee replacement, and human chondrocytes in alginate culture, from patients undergoing autologous chondrocyte implantation, were exposed to plasma ablation with a Paragon T2 probe (ArthroCare, Austin, TX). Instantaneous chondrocyte death was investigated with live/dead assays of biopsy specimens and cell cultures. Chondrocyte proliferation was determined by Hoechst staining of DNA on days 3 and 6. Messenger RNA expression of IL-1β, IL-6, IL-8, tumor necrosis factor α, high-mobility group protein B1, matrix metalloproteinase 13, type IIA collagen, and versican was determined on days 3 and 6.


      Live/dead imaging showed a well-defined local margin of cell death ranging from 150 to 200 μm deep, both in the alginate gel and in the biopsy specimens exposed to plasma ablation. The ablation-exposed group showed a significant proliferation increase compared with control on day 3 (P < .043). There were significant increases compared with control in IL-6 expression on day 3 (P < .020) and day 6 (P < .045) and in IL-8 expression on day 3 (P < .048). No differences were seen for IL-1β, tumor necrosis factor α, high-mobility group protein B1, matrix metalloproteinase 13, type II collagen, or versican.


      This study has shown that exposure to plasma-mediated ablation induces a well-defined area of immediate cell death and a short-term increase in proliferation with human articular chondrocytes in vitro. The exposure also alters cytokine expression for the same period, causing upregulation of IL-6 and IL-8.

      Clinical Relevance

      The results show the potential of plasma-mediated ablation to cause the onset of a tissue regeneration response with human articular cartilage.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Spahn G.
        • Klinger H.M.
        • Mückley T.
        • Hofmann G.O.
        Four-year results from a randomized controlled study of knee chondroplasty with concomitant medial meniscectomy: Mechanical debridement versus radiofrequency chondroplasty.
        Arthroscopy. 2010; 26: S73-S80
        • Hjelle K.
        • Solheim E.
        • Strand T.
        • Muri R.
        • Brittberg M.
        Articular cartilage defects in 1,000 knee arthroscopies.
        Arthroscopy. 2002; 18: 730-734
        • Widuchowski W.
        • Widuchowski J.
        • Trzaska T.
        Articular cartilage defects: Study of 25,124 knee arthroscopies.
        Knee. 2007; 14: 177-182
        • Shah M.R.
        • Kaplan K.M.
        • Meislin R.J.
        • Bosco III, J.A.
        Articular cartilage restoration of the knee.
        Bull NYU Hosp Jt Dis. 2007; 65: 51-60
        • Voloshin I.
        • Morse K.R.
        • Allred C.D.
        • Bissell S.A.
        • Maloney M.D.
        • DeHaven K.E.
        Arthroscopic evaluation of radiofrequency chondroplasty of the knee.
        Am J Sports Med. 2007; 35: 1702-1707
        • Kosy J.D.
        • Schranz P.J.
        • Toms A.D.
        • Eyres K.S.
        • Mandalia V.I.
        The use of radiofrequency energy for arthroscopic chondroplasty in the knee.
        Arthroscopy. 2011; 27: 695-703
        • Owens B.D.
        • Stickles B.J.
        • Balikian P.
        • Busconi B.D.
        Prospective analysis of radiofrequency versus mechanical debridement of isolated patellar chondral lesions.
        Arthroscopy. 2002; 18: 151-155
        • Voloshin I.
        • DeHaven K.E.
        • Steadman J.R.
        Second-look arthroscopic observations after radiofrequency treatment of partial thickness articular cartilage defects in human knees: Report of four cases.
        J Knee Surg. 2005; 18: 116-122
        • Kaplan L.
        • Uribe J.W.
        The acute effects of radiofrequency energy in articular cartilage: An in vitro study.
        Arthroscopy. 2000; 16: 2-5
        • Amiel D.
        • Ball S.T.
        • Tasto J.P.
        Chondrocyte viability and metabolic activity after treatment of bovine articular cartilage with bipolar radiofrequency: An in vitro study.
        Arthroscopy. 2004; 20: 503-510
        • Allen R.T.
        • Tasto J.P.
        • Cummings J.
        • Robertson C.M.
        • Amiel D.
        Meniscal debridement with an arthroscopic radiofrequency wand versus an arthroscopic shaver: Comparative effects on menisci and underlying articular cartilage.
        Arthroscopy. 2006; 22: 385-393
        • O'Neill C.W.
        • Liu J.J.
        • Leibenberg E.
        • et al.
        Percutaneous plasma decompression alters cytokine expression in injured porcine intervertebral discs.
        Spine J. 2004; 4: 88-98
        • Rhyu K.W.
        • Walsh A.J.
        • O'Neill C.W.
        • Bradford D.S.
        • Lotz J.C.
        The short-term effects of electrosurgical ablation on proinflammatory mediator production by intervertebral disc cells in tissue culture.
        Spine J. 2007; 7: 451-458
        • Takahashi N.
        • Tasto J.P.
        • Ritter M.
        • et al.
        Pain relief through an antinociceptive effect after radiofrequency application.
        Am J Sports Med. 2007; 35: 805-810
        • Tasto J.P.
        • Cummings J.
        • Medlock V.
        • Harwood F.
        • Hardesty R.
        • Amiel D.
        The tendon treatment center: New horizons in the treatment of tendinosis.
        Arthroscopy. 2003; 19: 213-223
        • Cook J.L.
        • Kuroki K.
        • Kenter K.
        • et al.
        Bipolar and monopolar radiofrequency treatment of osteoarthritic knee articular cartilage: Acute and temporal effects on cartilage compressive stiffness, permeability, cell synthesis, and extracellular matrix composition.
        J Knee Surg. 2004; 17: 99-108
        • Tallheden T.
        • Dennis J.E.
        • Lennon D.P.
        • Sjögren-Jansson E.
        • Caplan A.I.
        • Lindahl A.
        Phenotypic plasticity of human articular chondrocytes.
        J Bone Joint Surg Am. 2003; 85: 93-100
        • Fan Y.
        • Bergmann A.
        Apoptosis-induced compensatory proliferation.
        Trends Cell Biol. 2008; 18: 467-473
        • Ruifrok A.C.
        • Mason K.A.
        • Lozano G.
        • Thames H.D.
        Spatial and temporal patterns of expression of epidermal growth factor, transforming growth factor alpha and transforming growth factor beta 1-3 and their receptors in mouse jejunum after radiation treatment.
        Radiat Res. 1997; 147: 1-12
        • Sakurai T.
        • He G.
        • Matsuzawa A.
        • et al.
        Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis.
        Cancer Cell. 2008; 14: 156-165
        • Guerne P.A.
        • Carson D.A.
        • Lotz M.
        IL-6 production by human articular chondrocytes.
        J Immunol. 1990; 144: 499-505
        • Li D.
        • Wang G.Y.
        • Dong B.H.
        • Zhang Y.C.
        • Wang Y.X.
        • Sun B.C.
        Biological characteristics of human placental mesenchymal stem cells and their proliferative response to various cytokines.
        Cells Tissues Organs. 2007; 186: 169-179
        • Campo G.M.
        • Avenoso A.
        • Campo S.
        • et al.
        Purified human plasma glycosaminoglycans reduced NF-kappaB activation, pro-inflammatory cytokine production and apoptosis in LPS-treated chondrocytes.
        Innate Immun. 2008; 14: 233-246
        • Stalder W.J.
        • Brown K.R.I.G.
        • Smith C.D.
        Repetitive plasma discharges in saline solutions.
        Appl Phys Lett. 2001; 79: 4503-4505
        • Villarete L.H.
        • Remick D.G.
        Nitric oxide regulation of interleukin-8 gene expression.
        Shock. 1997; 7: 29-35
        • Woloszko J.
        • Stalder K.R.
        • Brown I.G.
        Plasma characteristics of repetitively-pulsed electrical discharges in saline solutions used for surgical procedures.
        IEEE Trans Plasma Sci. 2002; 30: 1376-1383
        • Shingu M.
        • Isayama T.
        • Yasutake C.
        • et al.
        Role of oxygen radicals and IL-6 in IL-1-dependent cartilage matrix degradation.
        Inflammation. 1994; 18: 613-623
        • Gillitzer R.
        • Goebeler M.
        Chemokines in cutaneous wound healing.
        J Leukoc Biol. 2001; 69: 513-521
        • Feugate J.E.
        • Wong L.
        • Li Q.J.
        • Martins-Green M.
        The CXC chemokine cCAF stimulates precocious deposition of ECM molecules by wound fibroblasts, accelerating development of granulation tissue.
        BMC Cell Biol. 2002; 3: 13
        • Shingu M.
        • Miyauchi S.
        • Nagai Y.
        • Yasutake C.
        • Horie K.
        The role of IL-4 and IL-6 in IL-1-dependent cartilage matrix degradation.
        Br J Rheumatol. 1995; 34: 101-106
        • van de Loo F.A.
        • Kuiper S.
        • van Enckevort F.H.
        • Arntz O.J.
        • van den Berg W.B.
        Interleukin-6 reduces cartilage destruction during experimental arthritis.
        Am J Pathol. 1997; 151: 177-191
        • Flannery C.R.
        • Little C.B.
        • Hughes C.E.
        • Curtis C.L.
        • Caterson B.
        • Jones S.A.
        IL-6 and its soluble receptor augment aggrecanase-mediated proteoglycan catabolism in articular cartilage.
        Matrix Biol. 2000; 19: 549-553
        • Jikko A.
        • Wakisaka T.
        • Iwamoto M.
        • et al.
        Effects of interleukin-6 on proliferation and proteoglycan metabolism in articular chondrocyte cultures.
        Cell Biol Int. 1998; 22: 615-621
        • Malfait A.M.
        • Verbruggen G.
        • Veys E.M.
        • Lambert J.
        • De Ridder L.
        • Cornelissen M.
        Comparative and combined effects of interleukin 6, interleukin 1 beta, and tumor necrosis factor alpha on proteoglycan metabolism of human articular chondrocytes cultured in agarose.
        J Rheumatol. 1994; 21: 314-320
        • Goldring M.B.
        • Goldring S.R.
        J Cell Physiol. 2007; 213: 626-634
        • Goldring M.B.
        • Otero M.
        • Tsuchimochi K.
        • Ijiri K.
        • Li Y.
        Defining the roles of inflammatory and anabolic cytokines in cartilage metabolism.
        Ann Rheum Dis. 2008; 67: iii75-iii82
        • Kobayashi M.
        • Squires G.R.
        • Mousa A.
        • et al.
        Role of interleukin-1 and tumor necrosis factor alpha in matrix degradation of human osteoarthritic cartilage.
        Arthritis Rheum. 2005; 52: 128-135
        • Lubberts E.
        • van den Berg W.B.
        Cytokines in the pathogenesis of rheumatoid arthritis and collagen-induced arthritis.
        Adv Exp Med Biol. 2003; 520: 194-202
        • Andersson U.
        • Harris H.E.
        The role of HMGB1 in the pathogenesis of rheumatic disease.
        Biochim Biophys Acta. 2010; 1799: 141-148