Advertisement

Cartilage Repair: 2013 Asian Update

      Abstract

      Despite financial and regulatory hurdles, Asian scientists and clinicians have made important contributions in the area of cartilage repair. Because it is impossible to include observations on all the published articles in one review, our attempt is to highlight Asian progress in this area during recent years (2005 to the present), reviewing research development and clinical studies. In the former, our discussion of in vitro studies focuses on (1) potential sources of stem cells—such as mesenchymal stem cells (MSCs) from marrow, cord blood, synovium, and mobilized peripheral blood—which are capable of enhancing cartilage repair and (2) the use of growth factors and scaffolds with and without cells. Our discussion of animal studies attempts to summarize activities in evaluating surgical procedures and determining the route of cell administration, as well as studies on matrices and scaffolds. It ranges from the use of small animals such as rats and rabbits to larger animals like pigs and dogs. The local adherent technique, enhancement of microfracture with poly(l-lactic-co-glycolic acid) scaffold, adenovirus-mediated bone morphogenic protein (BMP) genes, and MSCs—whether they are magnetically labeled, suspended in hyaluronic acid, or immobilized with transforming growth factor-β (TGF-β)—have all been able to engineer a repair of the osteochondral defect. Although published Asian reports of clinical studies on cartilage repair are few, the findings of relevant trials are summarized in our discussion of these investigations. There has been a long history of use of laboratory-derived MSCs for cartilage repair. Recent progress has suggested the potential utility of cord blood and mobilized peripheral blood in this area, as well as more injectable bone marrow (BM)-derived stem cells. Finally, we make a few suggestions on the direction of research and development activities and the need for collaborative approaches by regulatory agencies.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Snyder J.
        • Crooks V.A.
        New ethical perspectives on medical tourism in the developing world.
        Dev World Bioeth. 2012; 12 (iii-iv)
        • Einsiedel E.F.
        • Adamson H.
        Stem cell tourism and future of stem cell tourists: Policy and ethical implications.
        Dev World Bioeth. 2012; 12: 35-44
        • Cyranoski D.
        News in focus.
        Nature. 2012; 484: 149-150
        • Ito K.
        • Aoyama T.
        • Fukiage K.
        • et al.
        A novel method to isolate mesenchymal stem cells from bone marrow in a closed system using a device made by nonwoven fabric.
        Tissue Eng Part C Methods. 2010; 16: 81-91
        • Sekiya I.
        • Larson B.L.
        • Vuoristo J.T.
        • Reger R.L.
        • Prockop D.J.
        Comparison of effect of BMP-2, -4, and -6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma.
        Cell Tissue Res. 2005; 320: 269-276
        • Segawa Y.
        • Muneta T.
        • Makino H.
        • et al.
        Mesenchymal stem cells derived from synovium, meniscus, anterior cruciate ligament, and articular chondrocytes share similar gene expression profiles.
        J Orthop Res. 2009; 27: 435-441
        • Yoshimura H.
        • Muneta T.
        • Nimura A.
        • Yokoyama A.
        • Koga H.
        • Sekiya I.
        Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle.
        Cell Tissue Res. 2007; 327: 449-462
        • Zhang S.
        • Muneta T.
        • Morito T.
        • Mochizuki T.
        • Sekiya I.
        Autologous synovial fluid enhances migration of mesenchymal stem cells from synovium of osteoarthritis patients in tissue culture system.
        J Orthop Res. 2008; 26: 1413-1418
        • Ichinose S.
        • Muneta T.
        • Koga H.
        • et al.
        Morphological differences during in vitro chondrogenesis of bone marrow-, synovium-MSCs, and chondrocytes.
        Lab Invest. 2010; 90: 210-221
        • Ando W.
        • Tateishi K.
        • Hart D.A.
        • et al.
        Cartilage repair using an in vitro generated scaffold-free tissue-engineered construct derived from porcine synovial mesenchymal stem cells.
        Biomaterials. 2007; 28: 5462-5470
        • Nagase T.
        • Muneta T.
        • Ju Y.J.
        • et al.
        Analysis of the chondrogenic potential of human synovial stem cells according to harvest site and culture parameters in knees with medial compartment osteoarthritis.
        Arthritis Rheum. 2008; 58: 1389-1398
        • Koga H.
        • Muneta T.
        • Nagase T.
        • et al.
        Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: suitable conditions for cell therapy of cartilage defects in rabbit.
        Cell Tissue Res. 2008; 333: 207-215
        • Mizuno K.
        • Muneta T.
        • Morito T.
        • et al.
        Exogenous synovial stem cells adhere to defect of meniscus and differentiate into cartilage cells.
        J Med Dent Sci. 2008; 55: 101-111
        • Kim J.Y.
        • Jeon H.B.
        • Yang Y.S.
        • Oh W.
        • Chang J.W.
        Application of human umbilical cord blood-derived mesenchymal stem cells in disease models.
        World J Stem Cells. 2010; 2: 34-38
        • Jin H.J.
        • Park S.K.
        • Oh W.
        • Yang Y.S.
        • Kim S.W.
        • Choi S.J.
        Down-regulation of CD105 is associated with multi-lineage differentiation in human umbilical cord blood-derived mesenchymal stem cells.
        Biochem Biophys Res Commun. 2009; 381: 676-681
        • Yang S.E.
        • Ha C.W.
        • Jung M.
        • et al.
        Mesenchymal stem/progenitor cells developed in cultures from UC blood.
        Cytotherapy. 2004; 6: 476-486
        • Lu L.L.
        • Liu Y.J.
        • Yang S.G.
        • et al.
        Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials.
        Haematologica. 2006; 91: 1017-1026
        • Ramasamy R.
        • Tong C.K.
        • Yip W.K.
        • Vellasamy S.
        • Tan B.C.
        • Seow H.F.
        Basic fibroblast growth factor modulates cell cycle of human umbilical cord-derived mesenchymal stem cells.
        Cell Prolif. 2012; 45: 132-139
        • Zhang Z.Y.
        • Teoh S.H.
        • Chong M.S.
        • et al.
        Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells.
        Stem Cells. 2009; 27: 126-137
        • Zhang Z.Y.
        • Teoh S.H.
        • Chong M.S.
        • et al.
        Neo-vascularization and bone formation mediated by fetal mesenchymal stem cell tissue-engineered bone grafts in critical-size femoral defects.
        Biomaterials. 2010; 31: 608-620
        • Zhang Z.Y.
        • Teoh S.H.
        • Teo E.Y.
        • et al.
        A comparison of bioreactors for culture of fetal mesenchymal stem cells for bone tissue engineering.
        Biomaterials. 2010; 31: 8684-8695
        • Zhang Z.Y.
        • Teoh S.H.
        • Hui J.H.
        • Fisk N.M.
        • Choolani M.
        • Chan J.K.
        The potential of human fetal mesenchymal stem cells for off-the-shelf bone tissue engineering application.
        Biomaterials. 2012; 33: 2656-2672
        • Sakaguchi Y.
        • Sekiya I.
        • Yagishita K.
        • Muneta T.
        Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source.
        Arthritis Rheum. 2005; 52: 2521-2529
        • Afizah H.
        • Yang Z.
        • Hui J.H.
        • Ouyang H.W.
        • Lee E.H.
        A comparison between the chondrogenic potential of human bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) taken from the same donors.
        Tissue Eng. 2007; 13: 659-666
        • Lian Q.
        • Lye E.
        • Suan Y.K.
        • et al.
        Derivation of clinically compliant MSCs from CD105+, CD24- differentiated human ESCs.
        Stem Cells. 2007; 25: 425-436
        • Chong P.P.
        • Selvaratnam L.
        • Abbas A.A.
        • Kamarul T.
        Human peripheral blood derived mesenchymal stem cells demonstrate similar characteristics and chondrogenic differentiation potential to bone marrow derived mesenchymal stem cells.
        J Orthop Res. 2012; 30: 634-642
        • Saw K.Y.
        • Anz A.
        • Merican S.
        • et al.
        Articular cartilage regeneration with autologous peripheral blood progenitor cells and hyaluronic acid after arthroscopic subchondral drilling: A report of 5 cases with histology.
        Arthroscopy. 2011; 27: 493-506
        • Saw K.Y.
        • Anz A.
        • Jee C.S.Y.
        • et al.
        Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: A randomized controlled trial.
        Arthroscopy. 2013; 29: 684-694
        • Chen C.C.
        • Liao C.H.
        • Wang Y.H.
        • et al.
        Cartilage fragments from osteoarthritic knee promote chondrogenesis of mesenchymal stem cells without exogenous growth factor induction.
        J Orthop Res. 2012; 30: 393-400
        • Ho S.T.
        • Cool S.M.
        • Hui J.H.
        • Hutmacher D.W.
        The influence of fibrin based hydrogels on the chondrogenic differentiation of human bone marrow stromal cells.
        Biomaterials. 2010; 31: 38-47
        • Jin C.Z.
        • Choi B.H.
        • Park S.R.
        • Min B.H.
        Cartilage engineering using cell-derived extracellular matrix scaffold in vitro.
        J Biomed Mater Res A. 2010; 92: 1567-1577
        • Boo L.
        • Selvaratnam L.
        • Tai C.C.
        • Ahmad T.S.
        • Kamarul T.
        Expansion and preservation of multipotentiality of rabbit bone-marrow derived mesenchymal stem cells in dextran-based microcarrier spin culture.
        J Mater Sci Mater Med. 2011; 22: 1343-1356
        • Yanada S.
        • Ochi M.
        • Kojima K.
        • Sharman P.
        • Yasunaga Y.
        • Hiyama E.
        Possibility of selection of chondrogenic progenitor cells by telomere length in FGF-2-expanded mesenchymal stromal cells.
        Cell Prolif. 2006; 39: 575-584
        • Chan C.K.
        • Liao S.
        • Li B.
        • et al.
        Early adhesive behavior of bone-marrow-derived mesenchymal stem cells on collagen electrospun fibers.
        Biomed Mater. 2009; 4: 035006
        • Chen W.C.
        • Wei Y.H.
        • Chu I.M.
        • Yao C.L.
        Effect of chondroitin sulphate C on the in vitro and in vivo chondrogenesis of mesenchymal stem cells in crosslinked type II collagen scaffolds.
        J Tissue Eng Regen Med. 2013; 7: 665-672
        • Yang Z.
        • Wu Y.
        • Li C.
        • et al.
        Improved mesenchymal stem cells attachment and in vitro cartilage tissue formation on chitosan-modified poly(L-lactide-co-epsilon-caprolactone) scaffold.
        Tissue Eng Part A. 2012; 18: 242-251
        • Yokoyama A.
        • Muneta T.
        • Nimura A.
        • et al.
        FGF2 and dexamethasone increase the production of hyaluronan in two-dimensional culture of elastic cartilage-derived cells: In vitro analyses and in vivo cartilage formation.
        Cell Tissue Res. 2007; 329: 469-478
        • Yanada S.
        • Ochi M.
        • Adachi N.
        • Nobuto H.
        • Agung M.
        • Kawamata S.
        Effects of CD44 antibody– or RGDS peptide–immobilized magnetic beads on cell proliferation and chondrogenesis of mesenchymal stem cells.
        J Biomed Mater Res A. 2006; 77: 773-784
        • Ab-Rahim S.
        • Selvaratnam L.
        • Kamarul T.
        The effect of TGF-beta1 and beta-estradiol on glycosaminoglycan and type II collagen distribution in articular chondrocyte cultures.
        Cell Biol Int. 2008; 32: 841-847
        • Yang Z.
        • Zou Y.
        • Guo X.M.
        • et al.
        Temporal activation of β-catenin signaling in the chondrogenic process of mesenchymal stem cells affects the phenotype of the cartilage generated.
        Stem Cells Dev. 2012; 21: 1966-1976
        • Helledie T.
        • Dombrowski C.
        • Rai B.
        • et al.
        Heparan sulfate enhances the self-renewal and therapeutic potential of mesenchymal stem cells from human adult bone marrow.
        Stem Cells Dev. 2012; 21: 1897-1910
        • Ando W.
        • Tateishi K.
        • Katakai D.
        • et al.
        In vitro generation of a scaffold-free tissue-engineered construct (TEC) derived from human synovial mesenchymal stem cells: Biological and mechanical properties and further chondrogenic potential.
        Tissue Eng Part A. 2008; 14: 2041-2049
        • Mizuta H.
        • Kudo S.
        • Nakamura E.
        • Otsuka Y.
        • Takagi K.
        • Hiraki Y.
        Active proliferation of mesenchymal cells prior to the chondrogenic repair response in rabbit full-thickness defects of articular cartilage.
        Osteoarthritis Cartilage. 2004; 12: 586-596
        • Guo X.
        • Zheng Q.
        • Yang S.
        • et al.
        Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor β1 gene.
        Biomed. Mater. 2006; 1: 206-215
        • Fan H.
        • Liu L.
        • Zhu R.
        • et al.
        Comparison of chondral defects repair with in vitro and in vivo differentiated mesenchymal stem cells.
        Cell Transplant. 2007; 16: 823-832
        • Tateishi K.
        • Ando W.
        • Higuchi C.
        • et al.
        Comparison of human serum with fetal bovine serum for expansion and differentiation of human synovial MSCs: Potential feasibility for clinical applications.
        Cell Transplant. 2008; 17: 549-557
        • Yew T.L.
        • Huang T.F.
        • Ma H.L.
        • et al.
        Scale-up of MSCs under hypoxic conditions for allogeneic transplantation and enhancing bony regeneration in a rabbit calvarial defect model.
        J Orthop Res. 2012; 30: 1213-1220
        • Huang Y.C.
        • Zhu H.M.
        • Cai J.Q.
        • et al.
        Hypoxia inhibits the spontaneous calcification of bone marrow-derived mesenchymal stem cells.
        J Cell Biochem. 2012; 113: 1407-1415
        • Hachisuka H.
        • Mochizuki Y.
        • Yasunaga Y.
        • et al.
        Flow cytometric discrimination of mesenchymal progenitor cells from bone marrow-adherent cell populations using CD34/44/45(−) and Sca-1(+) markers.
        J Orthop Sci. 2007; 12: 161-169
        • Koga H.
        • Muneta T.
        • Ju Y.J.
        • et al.
        Synovial stem cells are regionally specified according to local microenvironments after implantation for cartilage regeneration.
        Stem Cells. 2007; 25: 689-696
        • Horie M.
        • Sekiya I.
        • Muneta T.
        • et al.
        Intra-articular injected synovial stem cells differentiate into meniscal cells directly and promote meniscal regeneration without mobilization to distant organs in rat massive meniscal defect.
        Stem Cells. 2009; 27: 878-887
        • Lee K.B.
        • Hui J.H.
        • Song I.C.
        • Ardany L.
        • Lee E.H.
        Injectable mesenchymal stem cell therapy for large cartilage defects–a porcine model.
        Stem Cells. 2007; 25: 2964-2971
        • Miyamoto T.
        • Muneta T.
        • Tabuchi T.
        • et al.
        Intradiscal transplantation of synovial mesenchymal stem cells prevents intervertebral disc degeneration through suppression of matrix metalloproteinase-related genes in nucleus pulposus cells in rabbits.
        Arthritis Res Ther. 2010; 12: R206
        • Sugioka T.
        • Ochi M.
        • Yasunaga Y.
        • Adachi N.
        • Yanada S.
        Accumulation of magnetically labeled rat mesenchymal stem cells using an external magnetic force, and their potential for bone regeneration.
        J Biomed Mater Res A. 2008; 85: 597-604
        • Kobayashi T.
        • Ochi M.
        • Yanada S.
        • et al.
        A novel cell delivery system using magnetically labeled mesenchymal stem cells and an external magnetic device for clinical cartilage repair.
        Arthroscopy. 2008; 24: 69-76
        • Motoyama M.
        • Deie M.
        • Kanaya A.
        • et al.
        In vitro cartilage formation using TGF-beta-immobilized magnetic beads and mesenchymal stem cell-magnetic bead complexes under magnetic field conditions.
        J Biomed Mater Res A. 2010; 92: 196-204
        • Pi Y.
        • Zhang X.
        • Shi J.
        • et al.
        Targeted delivery of non-viral vectors to cartilage in vivo using a chondrocyte-homing peptide identified by phage display.
        Biomaterials. 2011; 32: 6324-6332
        • Park S.H.
        • Choi B.H.
        • Park S.R.
        • Min B.H.
        Chondrogenesis of rabbit mesenchymal stem cells in fibrin/hyaluronan composite scaffold in vitro.
        Tissue Eng Part A. 2011; 17: 1277-1286
        • Kamarul T.
        • Ab-Rahim S.
        • Tumin M.
        • Selvaratnam L.
        • Ahmad T.S.
        A preliminary study of the effects of glucosamine sulphate and chondroitin sulphate on surgically treated and untreated focal cartilage damage.
        Eur Cell Mater. 2011; 21: 259-271
        • Tay L.X.
        • Ahmad R.E.
        • Dashtdar H.
        Treatment outcomes of alginate-embedded allogenic mesenchymal stem cells versus autologous chondrocytes for the repair of focal articular cartilage defects in a rabbit model.
        Am J Sports Med. 2012; 40: 83-90
        • Kamarul T.
        • Selvaratnam L.
        • Masjuddin T.
        • et al.
        Autologous chondrocyte transplantation in the repair of full-thickness focal cartilage damage in rabbits.
        J Orthop Surg (Hong Kong). 2008; 16: 230-236
        • Soon M.Y.
        • Hassan A.
        • Hui J.H.
        • Goh J.C.
        • Lee E.H.
        An analysis of soft tissue allograft anterior cruciate ligament reconstruction in a rabbit model: A short-term study of the use of mesenchymal stem cells to enhance tendon osteointegration.
        Am J Sports Med. 2007; 35: 962-971
        • Cao L.
        • Liu G.
        • Gan Y.
        • et al.
        The use of autologous enriched bone marrow MSCs to enhance osteoporotic bone defect repair in long-term estrogen deficient goats.
        Biomaterials. 2012; 33: 5076-5084
        • Koga H.
        • Shimaya M.
        • Muneta T.
        • et al.
        Local adherent technique for transplanting mesenchymal stem cells as a potential treatment of cartilage defect.
        Arthritis Res Ther. 2008; 10: R84
        • Shi J.
        • Zhang X.
        • Zeng X.
        • et al.
        One-step articular cartilage repair: Combination of in situ bone marrow stem cells with cell-free poly(l-lactic-co-glycolic acid) scaffold in a rabbit model.
        Orthopedics. 2012; 35: e665-e671
        • Zhang X.
        • Zheng Z.
        • Liu P.
        • et al.
        The synergistic effects of microfracture, perforated decalcified cortical bone matrix and adenovirus-bone morphogenetic protein-4 in cartilage defect repair.
        Biomaterials. 2008; 29: 4616-4629
        • Shao X.
        • Goh J.C.
        • Hutmacher D.W.
        • Lee E.H.
        • Zigang G.
        Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model.
        Tissue Eng. 2006; 12: 1539-1551
        • Ho S.T.
        • Hutmacher D.W.
        • Ekaputra A.K.
        • Hitendra D.
        • Hui J.H.
        The evaluation of a biphasic osteochondral implant coupled with an electrospun membrane in a large animal model.
        Tissue Eng Part A. 2010; 16: 1123-1141
        • Shimomura K.
        • Ando W.
        • Tateishi K.
        • et al.
        The influence of skeletal maturity on allogenic synovial mesenchymal stem cell-based repair of cartilage in a large animal model.
        Biomaterials. 2010; 31: 8004-8011
        • Jin C.Z.
        • Cho J.H.
        • Choi B.H.
        • et al.
        The maturity of tissue-engineered cartilage in vitro affects the repairability for osteochondral defect.
        Tissue Eng Part A. 2011; 17: 3057-3065
        • Wakitani S.
        • Imoto K.
        • Yamamoto T.
        • Saito M.
        • Murata N.
        • Yoneda M.
        Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees.
        Osteoarthritis Cartilage. 2002; 10: 199-206
        • Tohyama H.
        • Yasuda K.
        • Minami A.
        • et al.
        Atelocollagen-associated autologous chondrocyte implantation for the repair of chondral defects of the knee: A prospective multicenter clinical trial in Japan.
        J Orthop Sci. 2009; 14: 579-588
        • Takazawa K.
        • Adachi N.
        • Deie M.
        • et al.
        Evaluation of magnetic resonance imaging and clinical outcome after tissue-engineered cartilage implantation: Prospective 6-year follow-up study.
        J Orthop Sci. 2012; 17: 413-424
        • Nejadnik H.
        • Hui J.H.
        • Feng Choong E.P.
        • Tai B.C.
        • Lee E.H.
        Autologous bone marrow–derived mesenchymal stem cells versus autologous chondrocyte implantation.
        Am J Sports Med. 2010; 38: 1110-1116
        • Tanaka Y.
        • Mima H.
        • Yonetani Y.
        • Shiozaki Y.
        • Nakamura N.
        • Horibe S.
        Histological evaluation of spontaneous osteonecrosis of the medial femoral condyle and short-term clinical results of osteochondral autografting: a case series.
        Knee. 2009; 16: 130-135
        • Xu Y.
        • Shang P.
        • Chen A.
        Autologous osteochondral transplantation under arthroscope to treat cartilage defect.
        Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2006; 20 ([in Chinese]): 620-622
        • Li M.
        • Zhang C.
        • Ai Z.
        • Yuan T.
        • Feng Y.
        • Jia W.
        Therapeutic effectiveness of intra-knee-articular injection of platelet-rich plasma on knee articular cartilage degeneration.
        Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2011; 25 ([in Chinese]): 1192-1196
        • Kasemkijwattana C.
        • Kesprayura S.
        • Chaipinyo K.
        • Chanlalit C.
        • Chansiri K.
        Autologous chondrocytes implantation for traumatic cartilage defects of the knee.
        J Med Assoc Thai. 2009; 92: 648-653
        • Kasemkijwattana C.
        • Kesprayura S.
        • Chaipinyo K.
        • Chanlalit C.
        • Chansiri K.
        Autologous chondrocytes implantation with three-dimensional collagen scaffold.
        J Med Assoc Thai. 2009; 92: 1282-1286
        • Kasemkijwattana C.
        • Hongeng S.
        • Kesprayura S.
        • Rungsinaporn V.
        • Chaipinyo K.
        • Chansiri K.
        Autologous bone marrow mesenchymal stem cells implantation for cartilage defects: Two cases report.
        J Med Assoc Thai. 2011; 94: 395-400
        • Kuroda R.
        • Ishida K.
        • Matsumoto T.
        • et al.
        Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells.
        Osteoarthritis Cartilage. 2007; 15: 226-231
        • Teo B.J.
        • Buhary K.
        • Tai B.C.
        • Hui J.H.
        Cell-based therapy improves function in adolescents and young adults with patellar osteochondritis dissecans.
        Clin Orthop Relat Res. 2012; 471: 1152-1158
        • Wakitani S.
        • Okabe T.
        • Horibe S.
        • et al.
        Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months.
        J Tissue Eng Regen Med. 2011; 5: 146-150