Advertisement

Evidence-Based Status of Second- and Third-Generation Autologous Chondrocyte Implantation Over First Generation: A Systematic Review of Level I and II Studies

Published:September 30, 2013DOI:https://doi.org/10.1016/j.arthro.2013.07.271

      Purpose

      The purpose of this study was to examine the Level I and II evidence for newer generations of autologous chondrocyte implantation (ACI) versus first-generation ACI and to establish whether the newer generations have overcome the limitations associated with first-generation ACI.

      Methods

      A literature search was carried out for Level I and II evidence studies on cartilage repair using the PubMed database. All the studies that dealt with ACI were identified. Only Level I and II studies that compared newer generations against earlier generations were selected, whereas studies that compared ACI against other methods of cartilage repair were excluded.

      Results

      A total of 7 studies matched the selection criteria. Two studies compared periosteum-based autologous chondrocyte implantation (P-ACI) against collagen membrane–based autologous chondrocyte implantation (C-ACI), whereas one study each compared membrane-associated autologous chondrocyte implantation (MACI) against P-ACI and C-ACI. One study on C-ACI compared results related to age, whereas 2 studies evaluated postoperative rehabilitation after MACI. There was weak evidence showing that C-ACI is better than P-ACI and that MACI is comparable with both P-ACI and C-ACI. The weak evidence is because of studies with short durations of follow-up, small numbers of patients, medium-sized defects, and younger age groups. There is good evidence favoring an accelerated weight-bearing regimen after MACI. There is currently no evidence that supports scaffold-based ACI or arthroscopic implantation over first-generation ACI.

      Conclusions

      The hypothesis is thus partly proved in favor of C-ACI/MACI against P-ACI with weak evidence, in favor of accelerated weight bearing after MACI with strong evidence, and not in favor of arthroscopic and scaffold-based implantations because of unavailable evidence.

      Level of Evidence

      Level II, systematic review of Level I and II studies.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Brittberg M.
        • Lindahl A.
        • Nilsson A.
        • Ohlsson C.
        • Isaksson O.
        • Peterson L.
        Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation.
        N Engl J Med. 1994; 331: 889-895
        • Basad E.
        • Ishaque B.
        • Bachmann G.
        • Stürz H.
        • Steinmeyer J.
        Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: A 2-year randomised study.
        Knee Surg Sports Traumatol Arthrosc. 2010; 18: 519-527
        • Brittberg M.
        Cell carriers as the next generation of cell therapy for cartilage repair: A review of the matrix-induced autologous chondrocyte implantation procedure.
        Am J Sports Med. 2010; 38: 1259-1271
        • Bartlett W.
        • Skinner J.A.
        • Gooding C.R.
        • et al.
        Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: A prospective, randomised study.
        J Bone Joint Surg Br. 2005; 87: 640-645
        • Erggelet C.
        • Sittinger M.
        • Lahm A.
        The arthroscopic implantation of autologous chondrocytes for the treatment of full-thickness cartilage defects of the knee joint.
        Arthroscopy. 2003; 19: 108-110
        • Ferruzzi A.
        • Buda R.
        • Faldini C.
        • et al.
        Autologous chondrocyte implantation in the knee joint: Open compared with arthroscopic technique. Comparison at a minimum follow-up of five years.
        J Bone Joint Surg Am. 2008; 90: 90-101
        • Kon E.
        • Delcogliano M.
        • Filardo G.
        • Montaperto C.
        • Marcacci M.
        Second generation issues in cartilage repair.
        Sports Med Arthrosc. 2008; 16: 221-229
        • Kon E.
        • Gobbi A.
        • Filardo G.
        • Delcogliano M.
        • Zaffagnini S.
        • Marcacci M.
        Arthroscopic second-generation autologous chondrocyte implantation compared with microfracture for chondral lesions of the knee: Prospective nonrandomized study at 5 years.
        Am J Sports Med. 2009; 37: 33-41
        • Minas T.
        • Gomoll A.H.
        • Rosenberger R.
        • Royce R.O.
        • Bryant T.
        Increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques.
        Am J Sports Med. 2009; 37: 902-908
        • Peterson L.
        • Minas T.
        • Brittberg M.
        • Nilsson A.
        • Sjögren-Jansson E.
        • Lindahl A.
        Two- to 9-year outcome after autologous chondrocyte transplantation of the knee.
        Clin Orthop Relat Res. 2000; : 212-234
        • Sohn D.H.
        • Lottman L.M.
        • Lum L.Y.
        • et al.
        Effect of gravity on localization of chondrocytes implanted in cartilage defects.
        Clin Orthop Relat Res. 2002; : 254-262
        • Haddo O.
        • Mahroof S.
        • Higgs D.
        • et al.
        The use of chondrogide membrane in autologous chondrocyte implantation.
        Knee. 2004; 11: 51-55
        • Bentley G.
        • Biant L.C.
        • Carrington R.W.J.
        • et al.
        A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee.
        J Bone Joint Surg Br. 2003; 85: 223-230
        • Kreuz P.C.
        • Müller S.
        • Ossendorf C.
        • Kaps C.
        • Erggelet C.
        Treatment of focal degenerative cartilage defects with polymer-based autologous chondrocyte grafts: Four-year clinical results.
        Arthritis Res Ther. 2009; 11: R33
        • Marcacci M.
        • Zaffagnini S.
        • Kon E.
        • Visani A.
        • Iacono F.
        • Loreti I.
        Arthroscopic autologous chondrocyte transplantation: Technical note.
        Knee Surg Sports Traumatol Arthrosc. 2002; 10: 154-159
        • Gooding C.R.
        • Bartlett W.
        • Bentley G.
        • Skinner J.A.
        • Carrington R.
        • Flanagan A.
        A prospective, randomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: Periosteum covered versus type I/III collagen covered.
        Knee. 2006; 13: 203-210
        • Behrens P.
        • Bitter T.
        • Kurz B.
        • Russlies M.
        Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI)—5-Year follow-up.
        Knee. 2006; 13: 194-202
        • Cherubino P.
        • Grassi F.A.
        • Bulgheroni P.
        • Ronga M.
        Autologous chondrocyte implantation using a bilayer collagen membrane: A preliminary report.
        J Orthop Surg (Hong Kong). 2003; 11: 10-15
        • Kon E.
        • Filardo G.
        • Berruto M.
        • et al.
        Articular cartilage treatment in high-level male soccer players: A prospective comparative study of arthroscopic second-generation autologous chondrocyte implantation versus microfracture.
        Am J Sports Med. 2011; 39: 2549-2557
        • Zeifang F.
        • Oberle D.
        • Nierhoff C.
        • Richter W.
        • Moradi B.
        • Schmitt H.
        Autologous chondrocyte implantation using the original periosteum-cover technique versus matrix-associated autologous chondrocyte implantation: A randomized clinical trial.
        Am J Sports Med. 2010; 38: 924-933
        • Goyal D.
        • Keyhani S.
        • Lee E.H.
        • Hui J.H.
        Evidence-based status of microfracture technique: A systematic review of level I and II studies.
        Arthroscopy. 2013; 29: 1579-1588
        • Dozin B.
        • Malpeli M.
        • Cancedda R.
        • et al.
        Comparative evaluation of autologous chondrocyte implantation and mosaicplasty: A multicentered randomized clinical trial.
        Clin J Sport Med. 2005; 15: 220-226
        • Ebert J.R.
        • Fallon M.
        • Zheng M.H.
        • Wood D.J.
        • Ackland T.R.
        A randomized trial comparing accelerated and traditional approaches to postoperative weight bearing rehabilitation after matrix-induced autologous chondrocyte implantation: Findings at 5 years.
        Am J Sports Med. 2012; 40: 1527-1537
        • Gobbi A.
        • Francisco R.A.
        • Lubowitz J.H.
        • Allegra F.
        • Canata G.
        Osteochondral lesions of the talus: Randomized controlled trial comparing chondroplasty, microfracture, and osteochondral autograft transplantation.
        Arthroscopy. 2006; 22: 1085-1092
        • Gudas R.
        • Gudaitė A.
        • Mickevičius T.
        • et al.
        Comparison of osteochondral autologous transplantation, microfracture, or debridement techniques in articular cartilage lesions associated with anterior cruciate ligament injury: A prospective study with a 3-year follow-up.
        Arthroscopy. 2013; 29: 89-97
        • Gudas R.
        • Gudaite A.
        • Pocius A.
        • et al.
        Ten-year follow-up of a prospective, randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint of athletes.
        Am J Sports Med. 2012; 40: 2499-2508
        • Gudas R.
        • Kalesinskas R.J.
        • Kimtys V.
        • et al.
        A prospective randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint in young athletes.
        Arthroscopy. 2005; 21: 1066-1075
        • Gudas R.
        • Simonaityte R.
        • Cekanauskas E.
        • Tamosiūnas R.
        A prospective, randomized clinical study of osteochondral autologous transplantation versus microfracture for the treatment of osteochondritis dissecans in the knee joint in children.
        J Pediatr Orthop. 2009; 29: 741-748
        • Gudas R.
        • Stankevicius E.
        • Monastyreckiene E.
        • Pranys D.
        • Kalesinskas R.J.
        Osteochondral autologous transplantation versus microfracture for the treatment of articular cartilage defects in the knee joint in athletes.
        Knee Surg Sports Traumatol Arthrosc. 2006; 14: 834-842
        • Horas U.
        • Pelinkovic D.
        • Herr G.
        • Aigner T.
        • Schnettler R.
        Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. A prospective, comparative trial.
        J Bone Joint Surg Am. 2003; 85: 185-192
        • Knutsen G.
        • Drogset J.O.
        • Engebretsen L.
        • et al.
        A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years.
        J Bone Joint Surg Am. 2007; 89: 2105-2112
        • Knutsen G.
        • Engebretsen L.
        • Ludvigsen T.C.
        • et al.
        Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial.
        J Bone Joint Surg Am. 2004; 86: 455-464
        • Kreuz P.C.
        • Steinwachs M.
        • Erggelet C.
        • et al.
        Importance of sports in cartilage regeneration after autologous chondrocyte implantation: A prospective study with a 3-year follow-up.
        Am J Sports Med. 2007; 35: 1261-1268
        • Lim H.-C.
        • Bae J.-H.
        • Song S.-H.
        • Park Y.-E.
        • Kim S.-J.
        Current treatments of isolated articular cartilage lesions of the knee achieve similar outcomes.
        Clin Orthop Relat Res. 2012; 470: 2261-2267
        • Magnussen R.A.
        • Dunn W.R.
        • Carey J.L.
        • Spindler K.P.
        Treatment of focal articular cartilage defects in the knee: A systematic review.
        Clin Orthop Relat Res. 2008; 466: 952-962
        • Niemeyer P.
        • Köstler W.
        • Salzmann G.M.
        • Lenz P.
        • Kreuz P.C.
        • Südkamp N.P.
        Autologous chondrocyte implantation for treatment of focal cartilage defects in patients age 40 years and older: A matched-pair analysis with 2-year follow-up.
        Am J Sports Med. 2010; 38: 2410-2416
        • Samuelson E.M.
        • Brown D.E.
        Cost-effectiveness analysis of autologous chondrocyte implantation: A comparison of periosteal patch versus type I/III collagen membrane.
        Am J Sports Med. 2012; 40: 1252-1258
        • Saris D.B.F.
        • Vanlauwe J.
        • Victor J.
        • et al.
        Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture.
        Am J Sports Med. 2008; 36: 235-246
        • Saris D.B.F.
        • Vanlauwe J.
        • Victor J.
        • et al.
        Treatment of symptomatic cartilage defects of the knee: Characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture.
        Am J Sports Med. 2009; 37: 10S-19S
        • Van Assche D.
        • Staes F.
        • Van Caspel D.
        • et al.
        Autologous chondrocyte implantation versus microfracture for knee cartilage injury: A prospective randomized trial, with 2-year follow-up.
        Knee Surg Sports Traumatol Arthrosc. 2010; 18: 486-495
        • Van Assche D.
        • Van Caspel D.
        • Vanlauwe J.
        • et al.
        Physical activity levels after characterized chondrocyte implantation versus microfracture in the knee and the relationship to objective functional outcome with 2-year follow-up.
        Am J Sports Med. 2009; 37: 42S-49S
        • Vanlauwe J.
        • Saris D.B.F.
        • Victor J.
        • Almqvist K.F.
        • Bellemans J.
        • Luyten F.P.
        Five-year outcome of characterized chondrocyte implantation versus microfracture for symptomatic cartilage defects of the knee: Early treatment matters.
        Am J Sports Med. 2011; 39: 2566-2574
        • Vasiliadis H.S.
        • Wasiak J.
        • Salanti G.
        Autologous chondrocyte implantation for the treatment of cartilage lesions of the knee: A systematic review of randomized studies.
        Knee Surg Sports Traumatol Arthrosc. 2010; 18: 1645-1655
        • Visna P.
        • Pasa L.
        • Cizmár I.
        • Hart R.
        • Hoch J.
        Treatment of deep cartilage defects of the knee using autologous chondrograft transplantation and by abrasive techniques—A randomized controlled study.
        Acta Chir Belg. 2004; 104: 709-714
        • Wakitani S.
        • Imoto K.
        • Yamamoto T.
        • Saito M.
        • Murata N.
        • Yoneda M.
        Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees.
        Osteoarthritis Cartilage. 2002; 10: 199-206
        • Wondrasch B.
        • Zak L.
        • Welsch G.H.
        • Marlovits S.
        Effect of accelerated weight bearing after matrix-associated autologous chondrocyte implantation on the femoral condyle on radiographic and clinical outcome after 2 years: A prospective, randomized controlled pilot study.
        Am J Sports Med. 2009; 37: 88S-96S
        • Zaslav K.
        • Cole B.
        • Brewster R.
        • et al.
        A prospective study of autologous chondrocyte implantation in patients with failed prior treatment for articular cartilage defect of the knee: Results of the Study of the Treatment of Articular Repair (STAR) clinical trial.
        Am J Sports Med. 2009; 37: 42-55
        • Brittberg M.
        • Peterson L.
        • Sjögren-Jansson E.
        • Tallheden T.
        • Lindahl A.
        Articular cartilage engineering with autologous chondrocyte transplantation. A review of recent developments.
        J Bone Joint Surg Am. 2003; 85: 109-115
        • Peterson L.
        • Vasiliadis H.S.
        • Brittberg M.
        • Lindahl A.
        Autologous chondrocyte implantation: A long-term follow-up.
        Am J Sports Med. 2010; 38: 1117-1124
        • Wood J.J.
        • Malek M.A.
        • Frassica F.J.
        • et al.
        Autologous cultured chondrocytes: Adverse events reported to the United States Food and Drug Administration.
        J Bone Joint Surg Am. 2006; 88: 503-507
        • Grigolo B.
        • Lisignoli G.
        • Piacentini A.
        • et al.
        Evidence for redifferentiation of human chondrocytes grown on a hyaluronan-based biomaterial (HYAff 11): Molecular, immunohistochemical and ultrastructural analysis.
        Biomaterials. 2002; 23: 1187-1195
        • Mithoefer K.
        • Hambly K.
        • Della Villa S.
        • Silvers H.
        • Mandelbaum B.R.
        Return to sports participation after articular cartilage repair in the knee: Scientific evidence.
        Am J Sports Med. 2009; 37: 167S-176S
        • Krishnan S.P.
        • Skinner J.A.
        • Bartlett W.
        • et al.
        Who is the ideal candidate for autologous chondrocyte implantation?.
        J Bone Joint Surg Br. 2006; 88: 61-64
        • Marlovits S.
        • Striessnig G.
        • Kutscha-Lissberg F.
        • et al.
        Early postoperative adherence of matrix-induced autologous chondrocyte implantation for the treatment of full-thickness cartilage defects of the femoral condyle.
        Knee Surg Sports Traumatol Arthrosc. 2005; 13: 451-457
        • Brittberg M.
        • Sjögren-Jansson E.
        • Lindahl A.
        • Peterson L.
        Influence of fibrin sealant (Tisseel) on osteochondral defect repair in the rabbit knee.
        Biomaterials. 1997; 18: 235-242