Advertisement

Single-Bundle Anterior Cruciate Ligament Reconstruction: A Biomechanical Cadaveric Study of a Rectangular Quadriceps and Bone–Patellar Tendon–Bone Graft Configuration Versus a Round Hamstring Graft

Published:October 21, 2013DOI:https://doi.org/10.1016/j.arthro.2013.08.030

      Purpose

      The purposes of this study were to investigate anterior tibial translation under loading conditions after single-bundle (SB) anterior cruciate ligament (ACL) reconstruction using a rectangular tunnel placement strategy with quadriceps and bone–patellar tendon–bone (BPTB) graft and to compare these data with a SB hamstring reconstruction with a round tunnel design.

      Methods

      In 9 human cadaveric knees, the knee kinematics were examined with robotic/universal force-moment sensor testing. Within the same specimen, the knee kinematics under simulated pivot-shift and KT-1000 arthrometer (MEDmetric, San Diego, CA) testing were determined at 0°, 15°, 30°, 60°, and 90° of flexion under different conditions: intact knee, ACL-deficient knee, and SB ACL-reconstructed knee. For the SB ACL-reconstructed knee, 3 different SB reconstruction techniques were used: a rectangular tunnel strategy (9 × 5 mm) with quadriceps graft, a rectangular tunnel strategy with BPTB graft, and a round tunnel strategy (7 mm) with hamstring graft.

      Results

      In a simulated Lachman test, a statistically significant difference was found at 0° and 15° of knee flexion between the rectangular reconstruction with quadriceps graft (5.1 ± 1.2 mm and 8.3 ± 2 mm, respectively) or BPTB graft (5.3 ± 1.5 mm and 8 ± 1.9 mm, respectively) and the reconstruction using hamstring graft (7.2 ± 1.4 mm and 12 ± 1.8 mm, respectively) (P = .032 and P = .033, respectively, at 0°; P = .023 and P = .02, respectively, at 15°). On the simulated pivot-shift test at 0° and 15°, rectangular ACL reconstruction with quadriceps graft (3.9 ± 2.1 mm and 6.5 ± 1.7 mm, respectively) or BPTB graft (4.2 ± 1.8 mm and 6.7 ± 1.7 mm, respectively) showed a significantly lower anterior tibial translation when compared with round tunnel reconstruction (5.5 ± 2.1 mm and 7.9 ± 1.9 mm, respectively) (P = .03 and P = .041, respectively, at 0°; P = .042 and P = .046, respectively, at 15°).

      Conclusions

      Under simulated Lachman testing and pivot-shift testing, a reconstruction technique using a rectangular tunnel results in significantly lower anterior tibial translation at 0° and 15° of flexion in comparison to knees reconstructed with a hamstring SB graft using a round tunnel strategy.

      Clinical Relevance

      ACL reconstruction with a rectangular tunnel and BPTB and quadriceps tendon might result in better anterior knee stability at low flexion angles than ACL reconstruction with hamstring SB graft and a round tunnel in the clinical setting.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Herbort M.
        • Lenschow S.
        • Fu F.H.
        • Petersen W.
        • Zantop T.
        ACL mismatch reconstructions: Influence of different tunnel placement strategies in single-bundle ACL reconstructions on the knee kinematics.
        Knee Surg Sports Traumatol Arthrosc. 2010; 18: 1551-1558
        • Colvin A.C.
        • Shen W.
        • Musahl V.
        • Fu F.H.
        Avoiding pitfalls in anatomic ACL reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2009; 17: 956-963
        • Ho J.Y.
        • Gardiner A.
        • Shah V.
        • Steiner M.E.
        Equal kinematics between central anatomic single-bundle and double-bundle anterior cruciate ligament reconstructions.
        Arthroscopy. 2009; 25: 464-472
        • Jepsen C.F.
        • Lundberg-Jensen A.K.
        • Faunoe P.
        Does the position of the femoral tunnel affect the laxity or clinical outcome of the anterior cruciate ligament-reconstructed knee? A clinical, prospective, randomized, double-blind study.
        Arthroscopy. 2007; 23: 1326-1333
        • Girgis F.G.
        • Marshall J.L.
        • Monajem A.
        The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis.
        Clin Orthop Relat Res. 1975; : 216-231
        • Amis A.A.
        • Dawkins G.P.
        Functional anatomy of the anterior cruciate ligament. Fibre bundle actions related to ligament replacements and injuries.
        J Bone Joint Surg Br. 1991; 73: 260-267
        • Arnoczky S.P.
        Anatomy of the anterior cruciate ligament.
        Clin Orthop Relat Res. 1983; : 19-25
        • Luites J.W.
        • Wymenga A.B.
        • Blankevoort L.
        • Kooloos J.G.
        Description of the attachment geometry of the anteromedial and posterolateral bundles of the ACL from arthroscopic perspective for anatomical tunnel placement.
        Knee Surg Sports Traumatol Arthrosc. 2007; 15: 1422-1431
        • Zantop T.
        • Weimann A.
        • Schmidtko R.
        • Herbort M.
        • Raschke M.J.
        • Petersen W.
        Graft laceration and pullout strength of soft-tissue anterior cruciate ligament reconstruction: In vitro study comparing titanium, poly-d, l-lactide, and poly-d, l-lactide-tricalcium phosphate screws.
        Arthroscopy. 2006; 22: 1204-1210
        • Odensten M.
        • Gillquist J.
        Functional anatomy of the anterior cruciate ligament and a rationale for reconstruction.
        J Bone Joint Surg Am. 1985; 67: 257-262
        • Zantop T.
        • Wellmann M.
        • Fu F.H.
        • Petersen W.
        Tunnel positioning of anteromedial and posterolateral bundles in anatomic anterior cruciate ligament reconstruction: Anatomic and radiographic findings.
        Am J Sports Med. 2008; 36: 65-72
        • Petersen W.
        • Forkel P.
        • Achtnich A.
        • Metzlaff S.
        • Zantop T.
        Technique of anatomical footprint reconstruction of the ACL with oval tunnels and medial portal aimers.
        Arch Orthop Trauma Surg. 2013; 133: 827-833
        • Zantop T.
        • Petersen W.
        • Sekiya J.K.
        • Musahl V.
        • Fu F.H.
        Anterior cruciate ligament anatomy and function relating to anatomical reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2006; 14: 982-992
        • Pinczewski L.A.
        • Lyman J.
        • Salmon L.J.
        • Russell V.J.
        • Roe J.
        • Linklater J.A.
        10-year comparison of anterior cruciate ligament reconstructions with hamstring tendon and patellar tendon autograft: A controlled, prospective trial.
        Am J Sports Med. 2007; 35: 564-574
        • Prodromos C.C.
        • Han Y.
        • Rogowski J.
        • Joyce B.
        • Shi K.
        A meta-analysis of the incidence of anterior cruciate ligament tears as a function of gender, sport, and a knee injury-reduction regimen.
        Arthroscopy. 2007; 23: 1320-1325.e6
        • Musahl V.
        • Citak M.
        • O'Loughlin P.F.
        • Choi D.
        • Bedi A.
        • Pearle A.D.
        The effect of medial versus lateral meniscectomy on the stability of the anterior cruciate ligament-deficient knee.
        Am J Sports Med. 2010; 38: 1591-1597
        • Bedi A.
        • Musahl V.
        • O'Loughlin P.
        • et al.
        A comparison of the effect of central anatomical single-bundle anterior cruciate ligament reconstruction and double-bundle anterior cruciate ligament reconstruction on pivot-shift kinematics.
        Am J Sports Med. 2010; 38: 1788-1794
        • Hertel P.
        • Behrend H.
        Implant-free anterior cruciate ligament reconstruction with the patella ligament and press-fit double bundle technique.
        Unfallchirurg. 2010; 113 (in German): 540-548
        • Woo S.L.
        • Kanamori A.
        • Zeminski J.
        • Yagi M.
        • Papageorgiou C.
        • Fu F.H.
        The effectiveness of reconstruction of the anterior cruciate ligament with hamstrings and patellar tendon. A cadaveric study comparing anterior tibial and rotational loads.
        J Bone Joint Surg Am. 2002; 84: 907-914
        • Petersen W.
        • Tretow H.
        • Weimann A.
        • et al.
        Biomechanical evaluation of two techniques for double-bundle anterior cruciate ligament reconstruction: One tibial tunnel versus two tibial tunnels.
        Am J Sports Med. 2007; 35: 228-234
        • Zantop T.
        • Herbort M.
        • Raschke M.J.
        • Fu F.H.
        • Petersen W.
        The role of the anteromedial and posterolateral bundles of the anterior cruciate ligament in anterior tibial translation and internal rotation.
        Am J Sports Med. 2007; 35: 223-227
        • Yagi M.
        • Wong E.K.
        • Kanamori A.
        • Debski R.E.
        • Fu F.H.
        • Woo S.L.Y.
        Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction.
        Am J Sports Med. 2002; 30: 660-666
        • Zantop T.
        • Weimann A.
        • Rummler M.
        • Hassenpflug J.
        • Petersen W.
        Initial fixation strength of two bioabsorbable pins for the fixation of hamstring grafts compared to interference screw fixation: Single cycle and cyclic loading.
        Am J Sports Med. 2004; 32: 641-649
        • Carlin G.J.
        • Livesay G.A.
        • Harner C.D.
        • Ishibashi Y.
        • Kim H.S.
        • Woo S.L.
        In-situ forces in the human posterior cruciate ligament in response to posterior tibial loading.
        Ann Biomed Eng. 1996; 24: 193-197
        • Fujie H.
        • Livesay G.A.
        • Fujita M.
        • Woo S.L.
        Forces and moments in six-DOF at the human knee joint: Mathematical description for control.
        J Biomech. 1996; 29: 1577-1585
        • Rudy T.W.
        • Livesay G.A.
        • Woo S.L.
        • Fu F.H.
        A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments.
        J Biomech. 1996; 29: 1357-1360
        • Woo S.L.
        • Debski R.E.
        • Withrow J.D.
        • Janaushek M.A.
        Biomechanics of knee ligaments.
        Am J Sports Med. 1999; 27: 533-543
        • Woo S.L.
        • Debski R.E.
        • Wong E.K.
        • Yagi M.
        • Tarinelli D.
        Use of robotic technology for diathrodial joint research.
        J Sci Med Sport. 1999; 2: 283-297
        • Woo S.L.
        • Fisher M.B.
        Evaluation of knee stability with use of a robotic system.
        J Bone Joint Surg Am. 2009; 91: 78-84
        • Loh J.C.
        • Fukuda Y.
        • Tsuda E.
        • Steadman R.J.
        • Fu F.H.
        • Woo S.L.
        Knee stability and graft function following anterior cruciate ligament reconstruction: Comparison between 11 o'clock and 10 o'clock femoral tunnel placement. 2002 Richard O'Connor Award paper.
        Arthroscopy. 2003; 19: 297-304
        • Gabriel M.T.
        • Wong E.K.
        • Woo S.L.Y.
        • Yagi M.
        • Debski R.E.
        Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads.
        J Orthop Res. 2004; 22: 85-89
        • Kanamori A.
        • Zeminski J.
        • Rudy T.W.
        • Li G.
        • Fu F.H.
        • Woo S.L.
        The effect of axial tibial torque on the function of the anterior cruciate ligament: A biomechanical study of a simulated pivot shift test.
        Arthroscopy. 2002; 18: 394-398
        • Beynnon B.D.
        • Johnson R.J.
        • Abate J.A.
        • Fleming B.C.
        • Nichols C.E.
        Treatment of anterior cruciate ligament injuries, part I.
        Am J Sports Med. 2005; 33: 1579-1602
        • Bedi A.
        • Altchek D.W.
        The “footprint” anterior cruciate ligament technique: An anatomic approach to anterior cruciate ligament reconstruction.
        Arthroscopy. 2009; 25: 1128-1138
        • Bedi A.
        • Musahl V.
        • Steuber V.
        • et al.
        Transtibial versus anteromedial portal reaming in anterior cruciate ligament reconstruction: An anatomic and biomechanical evaluation of surgical technique.
        Arthroscopy. 2011; 27: 380-390
        • Dargel J.
        • Schmidt-Wiethoff R.
        • Fischer S.
        • Mader K.
        • Koebke J.
        • Schneider T.
        Femoral bone tunnel placement using the transtibial tunnel or the anteromedial portal in ACL reconstruction: A radiographic evaluation.
        Knee Surg Sports Traumatol Arthrosc. 2009; 17: 220-227
        • Purnell M.L.
        • Larsen A.I.
        • Clancy W.
        Anterior cruciate ligament insertions on the tibia and femur and their relationships to critical bony landmarks using high-resolution volume-rendering computed tomography.
        Am J Sports Med. 2008; 36: 2083-2090
        • Kato Y.
        • Ingham S.J.
        • Kramer S.
        • Smolinski P.
        • Saito A.
        • Fu F.H.
        Effect of tunnel position for anatomic single-bundle ACL reconstruction on knee biomechanics in a porcine model.
        Knee Surg Sports Traumatol Arthrosc. 2010; 18: 2-10
        • Buoncristiani A.M.
        • Tjoumakaris F.P.
        • Starman J.S.
        • Ferretti M.
        • Fu F.H.
        Anatomic double-bundle anterior cruciate ligament reconstruction.
        Arthroscopy. 2006; 22: 1000-1006
        • Crawford C.
        • Nyland J.
        • Landes S.
        • et al.
        Anatomic double bundle ACL reconstruction: A literature review.
        Knee Surg Sports Traumatol Arthrosc. 2007; 15 (discussion 965): 946-964
        • Marcacci M.
        • Molgora A.P.
        • Zaffagnini S.
        • Vascellari A.
        • Iacono F.
        • Presti M.L.
        Anatomic double-bundle anterior cruciate ligament reconstruction with hamstrings.
        Arthroscopy. 2003; 19: 540-546
        • Petersen W.
        • Zantop T.
        Anatomy of the anterior cruciate ligament with regard to its two bundles.
        Clin Orthop Relat Res. 2007; 454: 35-47
        • Shino K.
        • Nakata K.
        • Nakamura N.
        • Toritsuka Y.
        • Nakagawa S.
        • Horibe S.
        Anatomically oriented anterior cruciate ligament reconstruction with a bone-patellar tendon-bone graft via rectangular socket and tunnel: A snug-fit and impingement-free grafting technique.
        Arthroscopy. 2005; 21: 1402
        • Yasuda K.
        • Kondo E.
        • Ichiyama H.
        • et al.
        Anatomic reconstruction of the anteromedial and posterolateral bundles of the anterior cruciate ligament using hamstring tendon grafts.
        Arthroscopy. 2004; 20: 1015-1025
        • Siebold R.
        • Dehler C.
        • Ellert T.
        Prospective randomized comparison of double-bundle versus single-bundle anterior cruciate ligament reconstruction.
        Arthroscopy. 2008; 24: 137-145
        • Aglietti P.
        • Giron F.
        • Cuomo P.
        • Losco M.
        • Mondanelli N.
        Single-and double-incision double-bundle ACL reconstruction.
        Clin Orthop Relat Res. 2007; 454: 108-113
        • Kondo E.
        • Yasuda K.
        • Azuma H.
        • Tanabe Y.
        • Yagi T.
        Prospective clinical comparisons of anatomic double-bundle versus single-bundle anterior cruciate ligament reconstruction procedures in 328 consecutive patients.
        Am J Sports Med. 2008; 36: 1675-1687
        • Mae T.
        • Shino K.
        • Matsumoto N.
        • Maeda A.
        • Nakata K.
        • Yoneda M.
        Graft tension during active knee extension exercise in anatomic double-bundle anterior cruciate ligament reconstruction.
        Arthroscopy. 2010; 26: 214-222
        • Jonsson H.
        • Riklund-Ahlstrom K.
        • Lind J.
        Positive pivot shift after ACL reconstruction predicts later osteoarthrosis: 63 patients followed 5-9 years after surgery.
        Acta Orthop Scand. 2004; 75: 594-599
        • Kocher M.S.
        • Steadman J.R.
        • Briggs K.K.
        • Sterett W.I.
        • Hawkins R.J.
        Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction.
        Am J Sports Med. 2004; 32: 629-634
        • Noh J.H.
        • Yang B.G.
        • Roh Y.H.
        • Kim S.W.
        • Kim W.
        Anterior cruciate ligament reconstruction using 4-strand hamstring autograft: Conventional single-bundle technique versus oval-footprint technique.
        Arthroscopy. 2011; 27: 1502-1510