The Shape and the Thickness of the Anterior Cruciate Ligament Along Its Length in Relation to the Posterior Cruciate Ligament: A Cadaveric Study


      The purpose of this study was to evaluate the shape of the native anterior cruciate ligament (ACL) along its length in relation to the posterior cruciate ligament (PCL) and compare it with the size of the 3 commonly used autografts (bone–patellar tendon–bone [BPTB], single-bundle hamstring, and double-bundle hamstring).


      With the knee in extension, we filled the intercondylar notch with paraffin, fixing the cruciate ligaments in their natural position, in 8 cadaveric specimens. The ACL-PCL tissue specimen, embedded in paraffin, was removed en bloc. Gross sections were prepared in the coronal plane and were evaluated histologically. The width, thickness, and cross-sectional area of both the ACL and PCL were determined. The dimensions of the semitendinosus tendon (ST), gracilis tendon (GT), and BPTB grafts were measured and compared with those of the native ACL.


      The PCL occupies the largest part of the intercondylar area, leaving only a small space for the ACL in knee extension. The ACL midsubstance has a width of 5 mm, resembling a band shape. Only before its tibial insertion does the ACL fan out and take the form of its tibial attachment. The BPTB graft has a thickness of 5.8 mm, whereas the ST and GT grafts have a thickness of 6.25 mm and 4.5 mm, respectively, and are comparable to the midsubstance of the ACL but undersized in the tibial insertion (P = .0016 for BPTB graft, P = .002 for ST graft, and P = .0003 for GT graft). A quadruple-looped ST-GT graft, with a diameter of 8 mm, is oversized in the midsubstance (P = .0002) but fits better in the tibial attachment.


      The ACL midsubstance has a width of 5 mm, resembling a band shape. Before its tibial insertion, the ACL fans out like a trumpet, taking the form of its wide tibial attachment.

      Clinical Relevance

      The dimensions of the native ACL have to be considered in graft selection for anatomic ACL reconstruction.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Arnoczky S.P.
        Anatomy of the anterior cruciate ligament.
        Clin Orthop Relat Res. 1983; : 19-25
        • Hensler D.
        • Van Eck C.F.
        • Fu F.H.
        • Irrgang J.J.
        Anatomic anterior cruciate ligament reconstruction utilizing the double-bundle technique.
        J Orthop Sports Phys Ther. 2012; 42: 184-195
        • Iriuchishima T.
        • Ingham S.J.
        • Tajima G.
        • et al.
        Evaluation of the tunnel placement in the anatomical double-bundle ACL reconstruction: A cadaver study.
        Knee Surg Sports Traumatol Arthrosc. 2010; 18: 1226-1231
        • Zantop T.
        • Petersen W.
        • Sekiya J.K.
        • Musahl V.
        • Fu F.H.
        Anterior cruciate ligament anatomy and function relating to anatomical reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2006; 14: 982-992
        • Amis A.A.
        • Jakob R.P.
        Anterior cruciate ligament graft positioning, tensioning and twisting.
        Knee Surg Sports Traumatol Arthrosc. 1998; 6: S2-S12
        • Iriuchishima T.
        • Tajima G.
        • Ingham S.J.
        • et al.
        Intercondylar roof impingement pressure after anterior cruciate ligament reconstruction in a porcine model.
        Knee Surg Sports Traumatol Arthrosc. 2009; 17: 590-594
        • Karlsson J.
        • Irrgang J.J.
        • van Eck C.F.
        • Samuelsson K.
        • Mejia H.A.
        • Fu F.H.
        Anatomic single- and double-bundle anterior cruciate ligament reconstruction, part 2: Clinical application of surgical technique.
        Am J Sports Med. 2011; 39: 2016-2026
        • Kondo E.
        • Yasuda K.
        • Azuma H.
        • Tanabe Y.
        • Yagi T.
        Prospective clinical comparisons of anatomic double-bundle versus single-bundle anterior cruciate ligament reconstruction procedures in 328 consecutive patients.
        Am J Sports Med. 2008; 36: 1675-1687
        • Katouda M.
        • Soejima T.
        • Kanazawa T.
        • Tabuchi K.
        • Yamaki K.
        • Nagata K.
        Relationship between thickness of the anteromedial bundle and thickness of the posterolateral bundle in the normal ACL.
        Knee Surg Sports Traumatol Arthrosc. 2011; 19: 1293-1298
        • Muneta T.
        • Koga H.
        • Mochizuki T.
        • et al.
        A prospective randomized study of 4-strand semitendinosus tendon anterior cruciate ligament reconstruction comparing single-bundle and double-bundle techniques.
        Arthroscopy. 2007; 23: 618-628
        • Siebold R.
        • Dehler C.
        • Ellert T.
        Prospective randomized comparison of double-bundle versus single-bundle anterior cruciate ligament reconstruction.
        Arthroscopy. 2008; 24: 137-145
        • Noyes F.R.
        • Butler D.L.
        • Grood E.S.
        • Zernicke R.F.
        • Hefzy M.S.
        Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions.
        J Bone Joint Surg Am. 1984; 66: 344-352
        • Beynnon B.D.
        • Johnson R.J.
        • Fleming B.C.
        • et al.
        Anterior cruciate ligament replacement: Comparison of bone-patellar tendon-bone grafts with two-strand hamstring grafts. A prospective, randomized study.
        J Bone Joint Surg Am. 2002; 84: 1503-1513
        • Kopf S.
        • Pombo M.W.
        • Szczodry M.
        • Irrgang J.J.
        • Fu F.H.
        Size variability of the human anterior cruciate ligament insertion sites.
        Am J Sports Med. 2011; 39: 108-113
        • Siebold R.
        • Ellert T.
        • Metz S.
        • Metz J.
        Tibial insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: Morphometry, arthroscopic landmarks, and orientation model for bone tunnel placement.
        Arthroscopy. 2008; 24: 154-161
        • Siebold R.
        • Ellert T.
        • Metz S.
        • Metz J.
        Femoral insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: Morphometry and arthroscopic orientation models for double-bundle bone tunnel placement—A cadaver study.
        Arthroscopy. 2008; 24: 585-592
      1. Tantisricharoenkul G, Linde-Rosen M, Araujo P, Zhou J, Smolinski P, Fu FH. Anterior cruciate ligament: An anatomical exploration in humans and in a selection of animal species. Knee Surg Sports Traumatol Arthrosc. March 8, 2013. [Epub ahead of print.]

        • Piefer J.W.
        • Pflugner T.R.
        • Hwang M.D.
        • Lubowitz J.H.
        Anterior cruciate ligament femoral footprint anatomy: Systematic review of the 21st century literature.
        Arthroscopy. 2012; 28: 872-881
        • Paschos N.K.
        • Gartzonikas D.
        • Barkoula N.M.
        • et al.
        Cadaveric study of anterior cruciate ligament failure patterns under uniaxial tension along the ligament.
        Arthroscopy. 2010; 26: 957-967
        • Girgis F.G.
        • Marshall J.L.
        • Monajem A.
        The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis.
        Clin Orthop Relat Res. 1975; : 216-231
        • Harner C.D.
        • Xerogeanes J.W.
        • Livesay G.A.
        • et al.
        The human posterior cruciate ligament complex: An interdisciplinary study. Ligament morphology and biomechanical evaluation.
        Am J Sports Med. 1995; 23: 736-745
        • Mochizuki T.
        • Muneta T.
        • Nagase T.
        • Shirasawa S.
        • Akita K.I.
        • Sekiya I.
        Cadaveric knee observation study for describing anatomic femoral tunnel placement for two-bundle anterior cruciate ligament reconstruction.
        Arthroscopy. 2006; 22: 356-361
      2. Iriuchishima T, Yorifuji H, Aizawa S, Tajika Y, Murakami T, Fu FH. Evaluation of ACL mid-substance cross-sectional area for reconstructed autograft selection. Knee Surg Sports Traumatol Arthrosc. December 22, 2012. [Epub ahead of print.]

      3. Pujol N, Queinnec S, Boisrenoult P, Maqdes A, Beaufils P. Anatomy of the anterior cruciate ligament related to hamstring tendon grafts. A cadaveric study. Knee. November 14, 2012. [Epub ahead of print.]

        • Fujimoto E.
        • Sumen Y.
        • Deie M.
        • Yasumoto M.
        • Kobayashi K.
        • Ochi M.
        Anterior cruciate ligament graft impingement against the posterior cruciate ligament: Diagnosis using MRI plus three-dimensional reconstruction software.
        Magn Reson Imaging. 2004; 22: 1125-1129
        • Kropf E.J.
        • Shen W.
        • van Eck C.F.
        • Musahl V.
        • Irrgang J.J.
        • Fu F.H.
        ACL-PCL and intercondylar notch impingement: Magnetic resonance imaging of native and double-bundle ACL-reconstructed knees.
        Knee Surg Sports Traumatol Arthrosc. 2013; 21: 720-725
        • Nishimori M.
        • Sumen Y.
        • Sakaridani K.
        • Nakamura M.
        An evaluation of reconstructed ACL impingement on PCL using MRI.
        Magn Reson Imaging. 2007; 25: 722-726
      4. Mochizuki T, Fujishiro H, Nimura A, et al. Anatomic and histologic analysis of the mid-substance and fan-like extension fibres of the anterior cruciate ligament during knee motion, with special reference to the femoral attachment. Knee Surg Sports Traumatol Arthrosc. January 24, 2013. [Epub ahead of print.]

        • Duthon V.B.
        • Barea C.
        • Abrassart S.
        • Fasel J.H.
        • Fritschy D.
        • Menetrey J.
        Anatomy of the anterior cruciate ligament.
        Knee Surg Sports Traumatol Arthrosc. 2006; 14: 204-213
        • Harner C.D.
        • Livesay G.A.
        • Kashiwaguchi S.
        • Fujie H.
        • Choi N.Y.
        • Woo S.L.
        Comparative study of the size and shape of human anterior and posterior cruciate ligaments.
        J Orthop Res. 1995; 13: 429-434
        • Iriuchishima T.
        • Tajima G.
        • Shirakura K.
        • et al.
        In vitro and in vivo AM and PL tunnel positioning in anatomical double bundle anterior cruciate ligament reconstruction.
        Arch Orthop Trauma Surg. 2011; 131: 1085-1090
        • Iriuchishima T.
        • Shirakura K.
        • Fu F.H.
        Graft impingement in anterior cruciate ligament reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2013; 21: 664-670
        • Kanaya A.
        • Ochi M.
        • Deie M.
        • Adachi N.
        • Nishimori M.
        • Nakamae A.
        Intraoperative evaluation of anteroposterior and rotational stabilities in anterior cruciate ligament reconstruction: Lower femoral tunnel placed single-bundle versus double-bundle reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2009; 17: 907-913
        • Gabriel M.T.
        • Wong E.K.
        • Woo S.L.
        • Yagi M.
        • Debski R.E.
        Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads.
        J Orthop Res. 2004; 22: 85-89
        • Howell S.M.
        • Hull M.L.
        Checkpoints for judging tunnel and anterior cruciate ligament graft placement.
        J Knee Surg. 2009; 22: 161-170
        • Howell S.M.
        • Taylor M.A.
        Failure of reconstruction of the anterior cruciate ligament due to impingement by the intercondylar roof.
        J Bone Joint Surg Am. 1993; 75: 1044-1055