Effect of Intra-articular Local Anesthesia on Articular Cartilage in the Knee


      To evaluate the hypothetical toxic effect of local anesthetics on the articular cartilage using patient data from autologous chondrocyte cultivation with different anesthesia types used for arthroscopic cartilage biopsy specimen procurement.


      A retrospective analysis of patient data from the national autologous chondrocyte implantation registry and the corresponding hospital records was approved by the National Medical Ethics Committee. Articular cartilage biopsy specimens from the knees of 49 consecutive patients assigned for autologous chondrocyte implantation (aged 14 to 44 years) were procured from the non–weight-bearing articular surface during arthroscopy under general anesthesia (12 patients), spinal anesthesia (18 patients), or local anesthesia (intra-articular injection of 15 to 20 mL of 2% lidocaine hydrochloride) (19 patients). All the biopsy specimens were further manipulated following the same chondrocyte cultivation protocol. General patient data and surgery-related parameters, together with chondrocyte viability, population doublings, and chondrocyte morphology in biopsy specimens and primary cell cultures, were analyzed and compared across different types of anesthesia.


      Patients in the general, spinal, and local anesthesia groups showed no statistical differences in age (27 years, 29 years, and 32 years, respectively), duration of surgery (36 minutes, 37 minutes, and 39 minutes, respectively), weight of biopsy specimens (110 mg, 178 mg, and 130 mg, respectively), cell viability in cartilage biopsy specimens (67%, 69%, and 78%, respectively) or primary cultures (95%, 95%, and 95%, respectively), and population doublings (5.2, 5.2, and 5.2, respectively). Similar chondrocyte morphology in primary cell cultures was observed among the 3 groups.


      This retrospective study showed that a single intra-articular injection of lidocaine hydrochloride used for knee arthroscopy did not influence the viability, morphology, and cultivation potential of chondrocytes in articular cartilage biopsy specimens assigned for autologous chondrocyte implantation.

      Level of Evidence

      Level IV, retrospective comparative study.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Zhang W.
        • Moskowitz R.W.
        • Nuki G.
        • et al.
        OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines.
        Osteoarthritis Cartilage. 2008; 16: 137-162
        • Law B.K.
        • Yung P.S.
        • Ho E.P.
        • et al.
        Review of knee arthroscopy performed under local anesthesia.
        Sports Med Arthrosc Rehabil Ther Technol. 2009; 1: 3
        • Campo M.M.
        • Kerkhoffs G.M.
        • Sierevelt I.N.
        • Weeseman R.R.
        • Van der Vis H.M.
        • Albers G.H.
        A randomised controlled trial for the effectiveness of intra-articular Ropivacaine and Bupivacaine on pain after knee arthroscopy: The DUPRA (DUtch Pain Relief after Arthroscopy)-trial.
        Knee Surg Sports Traumatol Arthrosc. 2012; 20: 239-244
        • Ng H.P.
        • Nordstrom U.
        • Axelsson K.
        • et al.
        Efficacy of intra-articular bupivacaine, ropivacaine, or a combination of ropivacaine, morphine, and ketorolac on postoperative pain relief after ambulatory arthroscopic knee surgery: A randomized double-blind study.
        Reg Anesth Pain Med. 2006; 31: 26-33
        • Hansen B.P.
        • Beck C.L.
        • Beck E.P.
        • Townsley R.W.
        Postarthroscopic glenohumeral chondrolysis.
        Am J Sports Med. 2007; 35: 1628-1634
        • Anderson S.L.
        • Buchko J.Z.
        • Taillon M.R.
        • Ernst M.A.
        Chondrolysis of the glenohumeral joint after infusion of bupivacaine through an intra-articular pain pump catheter: A report of 18 cases.
        Arthroscopy. 2010; 26: 451-461
        • Noyes F.R.
        • Fleckenstein C.M.
        • Barber-Westin S.D.
        The development of postoperative knee chondrolysis after intra-articular pain pump infusion of an anesthetic medication: A series of twenty-one cases.
        J Bone Joint Surg Am. 2012; 94: 1448-1457
        • Solomon D.J.
        • Navaie M.
        • Stedje-Larsen E.T.
        • Smith J.C.
        • Provencher M.T.
        Glenohumeral chondrolysis after arthroscopy: A systematic review of potential contributors and causal pathways.
        Arthroscopy. 2009; 25: 1329-1342
        • Baker J.F.
        • Mulhall K.J.
        Local anaesthetics and chondrotoxicty: What is the evidence?.
        Knee Surg Sports Traumatol Arthrosc. 2012; 20: 2294-2301
        • Piper S.L.
        • Kramer J.D.
        • Kim H.T.
        • Feeley B.T.
        Effects of local anesthetics on articular cartilage.
        Am J Sports Med. 2011; 39: 2245-2253
        • Dragoo J.L.
        • Braun H.J.
        • Kim H.J.
        • Phan H.D.
        • Golish S.R.
        The in vitro chondrotoxicity of single-dose local anesthetics.
        Am J Sports Med. 2012; 40: 794-799
        • Karpie J.C.
        • Chu C.R.
        Lidocaine exhibits dose- and time-dependent cytotoxic effects on bovine articular chondrocytes in vitro.
        Am J Sports Med. 2007; 35: 1621-1627
        • Lo I.K.
        • Sciore P.
        • Chung M.
        • et al.
        Local anesthetics induce chondrocyte death in bovine articular cartilage disks in a dose- and duration-dependent manner.
        Arthroscopy. 2009; 25: 707-715
        • Miyazaki T.
        • Kobayashi S.
        • Takeno K.
        • Yayama T.
        • Meir A.
        • Baba H.
        Lidocaine cytotoxicity to the bovine articular chondrocytes in vitro: Changes in cell viability and proteoglycan metabolism.
        Knee Surg Sports Traumatol Arthrosc. 2011; 19: 1198-1205
        • Park J.
        • Sutradhar B.C.
        • Hong G.
        • Choi S.H.
        • Kim G.
        Comparison of the cytotoxic effects of bupivacaine, lidocaine, and mepivacaine in equine articular chondrocytes.
        Vet Anaesth Analg. 2011; 38: 127-133
        • Piper S.L.
        • Kim H.T.
        Comparison of ropivacaine and bupivacaine toxicity in human articular chondrocytes.
        J Bone Joint Surg Am. 2008; 90: 986-991
        • Grishko V.
        • Xu M.
        • Wilson G.
        • Pearsall IV, A.W.
        Apoptosis and mitochondrial dysfunction in human chondrocytes following exposure to lidocaine, bupivacaine, and ropivacaine.
        J Bone Joint Surg Am. 2010; 92: 609-618
        • Bogatch M.T.
        • Ferachi D.G.
        • Kyle B.
        • et al.
        Is chemical incompatibility responsible for chondrocyte death induced by local anesthetics?.
        Am J Sports Med. 2010; 38: 520-526
        • Dragoo J.L.
        • Korotkova T.
        • Kim H.J.
        • Jagadish A.
        Chondrotoxicity of low pH, epinephrine, and preservatives found in local anesthetics containing epinephrine.
        Am J Sports Med. 2010; 38: 1154-1159
        • Mead R.N.
        • Ryu J.
        • Liu S.
        • et al.
        Supraphysiologic temperature enhances cytotoxic effects of bupivacaine on bovine articular chondrocytes in an in vitro study.
        Arthroscopy. 2012; 28: 397-404
        • Piper S.L.
        • Kim H.T.
        Thermal stress potentiates bupivacaine chondrotoxicity.
        Arthroscopy. 2012; 28: 1246-1254
        • Alibegovic A.
        • Balazic J.
        • Petrovic D.
        • et al.
        The optimal combination of cartilage source and apparatus for long-term in vitro chondrocyte viability analysis.
        J Forensic Sci. 2012; 57: 1601-1607
        • Cristofalo V.J.
        • Allen R.G.
        • Pignolo R.J.
        • Martin B.G.
        • Beck J.C.
        Relationship between donor age and the replicative lifespan of human cells in culture: A reevaluation.
        Proc Natl Acad Sci U S A. 1998; 95: 10614-10619
        • Chu C.R.
        • Izzo N.J.
        • Papas N.E.
        • Fu F.H.
        In vitro exposure to 0.5% bupivacaine is cytotoxic to bovine articular chondrocytes.
        Arthroscopy. 2006; 22: 693-699
        • Chu C.R.
        • Izzo N.J.
        • Coyle C.H.
        • Papas N.E.
        • Logar A.
        The in vitro effects of bupivacaine on articular chondrocytes.
        J Bone Joint Surg Br. 2008; 90: 814-820
        • Dogan N.
        • Erdem A.F.
        • Erman Z.
        • Kizilkaya M.
        The effects of bupivacaine and neostigmine on articular cartilage and synovium in the rabbit knee joint.
        J Int Med Res. 2004; 32: 513-519
        • Gomoll A.H.
        • Kang R.W.
        • Williams J.M.
        • Bach B.R.
        • Cole B.J.
        Chondrolysis after continuous intra-articular bupivacaine infusion: An experimental model investigating chondrotoxicity in the rabbit shoulder.
        Arthroscopy. 2006; 22: 813-819
        • Chu C.R.
        • Coyle C.H.
        • Chu C.T.
        • et al.
        In vivo effects of single intra-articular injection of 0.5% bupivacaine on articular cartilage.
        J Bone Joint Surg Am. 2010; 92: 599-608
        • Piat P.
        • Richard H.
        • Beauchamp G.
        • Laverty S.
        In vivo effects of a single intra-articular injection of 2% lidocaine or 0.5% bupivacaine on articular cartilage of normal horses.
        Vet Surg. 2012; 41: 1002-1010
        • Erden I.A.
        • Altinel S.
        • Saricaoglu F.
        • et al.
        Effect of intra-articular injection of levobupivacaine on articular cartilage and synovium in rats.
        Anaesthesist. 2012; 61: 420-423
        • Dahl M.R.
        • Dasta J.F.
        • Zuelzer W.
        • McSweeney T.D.
        Lidocaine local anesthesia for arthroscopic knee surgery.
        Anesth Analg. 1990; 71: 670-674
        • Ramanathan R.
        Arthroscopy under local anaesthesia.
        Med J Malaysia. 1998; 53: 99-101
        • Townshend D.
        • Emmerson K.
        • Jones S.
        • Partington P.
        • Muller S.
        Intra-articular injection versus portal infiltration of 0.5% bupivacaine following arthroscopy of the knee: A prospective, randomised double-blinded trial.
        J Bone Joint Surg Br. 2009; 91: 601-603
        • Massey T.
        • Huang T.L.
        • Malinick R.
        • Zell M.
        Serum lidocaine levels during arthroscopy using continuous irrigation with lidocaine.
        Clin Orthop Relat Res. 1988; : 182-184
        • Weiker G.G.
        • Kuivila T.E.
        • Pippinger C.E.
        Serum lidocaine and bupivacaine levels in local technique knee arthroscopy.
        Am J Sports Med. 1991; 19: 499-502
        • Malicev E.
        • Barlic A.
        • Kregar-Velikonja N.
        • Strazar K.
        • Drobnic M.
        Cartilage from the edge of a debrided articular defect is inferior to that from a standard donor site when used for autologous chondrocyte cultivation.
        J Bone Joint Surg Br. 2011; 93: 421-426
        • Wallis W.J.
        • Simkin P.A.
        • Nelp W.B.
        • Foster D.M.
        Intraarticular volume and clearance in human synovial effusions.
        Arthritis Rheum. 1985; 28: 441-449
        • Routledge P.A.
        • Barchowsky A.
        • Bjornsson T.D.
        • Kitchell B.B.
        • Shand D.G.
        Lidocaine plasma protein binding.
        Clin Pharmacol Ther. 1980; 27: 347-351
        • Saunders B.
        • Wing P.C.
        Washout of local anesthetic during arthroscopy.
        Arthroscopy. 1988; 4: 90-92
        • Thomson P.D.
        • Melmon K.L.
        • Richardson J.A.
        • et al.
        Lidocaine pharmacokinetics in advanced heart failure, liver disease, and renal failure in humans.
        Ann Intern Med. 1973; 78: 499-508