Advertisement

Growth Factor Expression After Lesion Creation in the Avascular Zone of the Meniscus: A Quantitative PCR Study in Rabbits

      Purpose

      To define the variations in the expression of 5 growth factor genes in meniscal tissue after a lesion is created in the avascular zone of the medial meniscus of the rabbit.

      Methods

      A longitudinal lesion was created in the avascular zone of the anterior horn of the medial meniscus in 42 rabbits. Six animals were killed at 0, 1, 3, 7, 14, 21, and 120 days after lesion creation. Meniscal tissue from the avascular and vascular zones was harvested. A quantitative polymerase chain reaction analysis was performed to evaluate the expression levels of 5 different growth factors: vascular endothelial growth factor A (VEGF-A), insulin-like growth factor 1 (IGF-1), transforming growth factor β1 (TGF-β1), platelet-derived growth factor β (PDGF-β), and interleukin 1β.

      Results

      The basal expression levels of all the growth factors studied were similar in the avascular and vascular zones. There was an increase in VEGF-A expression in the avascular zone on the 14th day, an increase in IGF-1 expression in the vascular zone on the 14th day, a decrease in PDGF-β expression in both zones in the first week, an increase in interleukin 1β expression in both zones on the first day, and a decrease in TGF-β1 expression in the vascular zone in the first week. At 120 days, the expression levels of all 5 growth factors returned to basal levels.

      Conclusions

      There are significant variations in the expression of the growth factors studied during the first weeks after meniscal lesion creation. The preinjury expression levels are similar in the avascular and vascular zones and are not significantly different from the basal levels 4 months after injury.

      Clinical Relevance

      This study identifies potential therapeutic molecular targets (VEGF-A, IGF-1, TGF-β1, and PDGF-β) that can be used in the treatment of meniscal tears.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Poulsen M.R.
        • Johnson D.L.
        Meniscal injuries in the young, athletically active patient.
        Phys Sportsmed. 2011; 39: 123-130
        • Noyes F.R.
        • Barber-Westin S.D.
        Arthroscopic repair of meniscal tears extending into the avascular zone in patients younger than twenty years of age.
        Am J Sports Med. 2002; 30: 589-600
        • Papachristou G.
        • Efstathopoulos N.
        • Plessas S.
        • Levidiotis C.
        • Chronopoulos E.
        • Sourlas J.
        Isolated meniscal repair in the avascular area.
        Acta Orthop Belg. 2003; 69: 341-345
        • Kobayashi K.
        • Fujimoto E.
        • Deie M.
        • Sumen Y.
        • Ikuta Y.
        • Ochi M.
        Regional differences in the healing potential of the meniscus—An organ culture model to eliminate the influence of microvasculature and the synovium.
        Knee. 2004; 11: 271-278
        • Hoser C.
        • Fink C.
        • Brown C.
        • Reichkendler M.
        • Hackl W.
        • Bartlett J.
        Long-term results of arthroscopic partial lateral meniscectomy in knees without associated damage.
        J Bone Joint Surg Br. 2001; 83: 513-516
        • Rangger C.
        • Klestil T.
        • Gloetzer W.
        • Kemmler G.
        • Benedetto K.P.
        Osteoarthritis after arthroscopic partial meniscectomy.
        Am J Sports Med. 1995; 23: 240-244
        • Rockborn P.
        • Messner K.
        Long-term results of meniscus repair and meniscectomy: A 13-year functional and radiographic follow-up study.
        Knee Surg Sports Traumatol Arthrosc. 2000; 8: 2-10
        • Petersen W.
        • Pufe T.
        • Starke C.
        • et al.
        Locally applied angiogenic factors—A new therapeutic tool for meniscal repair.
        Ann Anat. 2005; 187: 509-519
        • Pufe T.
        • Petersen W.
        • Kurz B.
        • Tsokos M.
        • Tillmann B.
        • Mentlein R.
        Mechanical factors influence the expression of endostatin—An inhibitor of angiogenesis—In tendons.
        J Orthop Res. 2003; 21: 610-616
        • Fujii M.
        • Furumatsu T.
        • Yokoyama Y.
        • et al.
        Chondromodulin-I derived from the inner meniscus prevents endothelial cell proliferation.
        J Orthop Res. 2013; 31: 538-543
        • Makris E.A.
        • Hadidi P.
        • Athanasiou K.A.
        The knee meniscus: Structure-function, pathophysiology, current repair techniques, and prospects for regeneration.
        Biomaterials. 2011; 32: 7411-7431
        • Barrientos S.
        • Stojadinovic O.
        • Golinko M.S.
        • Brem H.
        • Tomic-Canic M.
        Growth factors and cytokines in wound healing.
        Wound Repair Regen. 2008; 16: 585-601
        • Ruiz-Ibán M.Á.
        • Díaz-Heredia J.
        • García-Gómez I.
        • Gonzalez-Lizán F.
        • Elías-Martín E.
        • Abraira V.
        The effect of the addition of adipose-derived mesenchymal stem cells to a meniscal repair in the avascular zone: An experimental study in rabbits.
        Arthroscopy. 2011; 27: 1688-1696
      1. Gene [database online]. Bethesda, MD: National Institutes of Health, 2013. Available from: URL: www.ncbi.nlm.nih.gov/gene. Accessed March 27, 2013.

        • Pfaffl M.W.
        A new mathematical model for relative quantification in real-time RT-PCR.
        Nucleic Acids Res. 2001; 29: e45
        • Becker R.
        • Pufe T.
        • Kulow S.
        • et al.
        Expression of vascular endothelial growth factor during healing of the meniscus in a rabbit model.
        J Bone Joint Surg Br. 2004; 86: 1082-1087
        • Bhargava M.M.
        • Attia E.T.
        • Murrell G.A.
        • Dolan M.M.
        • Warren R.F.
        • Hannafin J.A.
        The effect of cytokines on the proliferation and migration of bovine meniscal cells.
        Am J Sports Med. 1999; 27: 636-643
        • Hennerbichler A.
        • Moutos F.T.
        • Hennerbichler D.
        • Weinberg J.B.
        • Guilak F.
        Interleukin-1 and tumor necrosis factor alpha inhibit repair of the porcine meniscus in vitro.
        Osteoarthritis Cartilage. 2007; 15: 1053-1060
        • McNulty A.L.
        • Moutos F.T.
        • Weinberg J.B.
        • Guilak F.
        Enhanced integrative repair of the porcine meniscus in vitro by inhibition of interleukin-1 or tumor necrosis factor alpha.
        Arthritis Rheum. 2007; 56: 3033-3042
        • Nishida M.
        • Higuchi H.
        • Kobayashi Y.
        • Takagishi K.
        Histological and biochemical changes of experimental meniscus tear in the dog knee.
        J Orthop Sci. 2005; 10: 406-413
        • Ochi M.
        • Uchio Y.
        • Okuda K.
        • Shu N.
        • Yamaguchi H.
        • Sakai Y.
        Expression of cytokines after meniscal rasping to promote meniscal healing.
        Arthroscopy. 2001; 17: 724-731
        • Petersen W.
        • Pufe T.
        • Starke C.
        • et al.
        The effect of locally applied vascular endothelial growth factor on meniscus healing: Gross and histological findings.
        Arch Orthop Trauma Surg. 2007; 127: 235-240
        • Spindler K.P.
        • Mayes C.E.
        • Miller R.R.
        • Imro A.K.
        • Davidson J.M.
        Regional mitogenic response of the meniscus to platelet-derived growth factor (PDGF-AB).
        J Orthop Res. 1995; 13: 201-207
        • Wilusz R.E.
        • Weinberg J.B.
        • Guilak F.
        • McNulty A.L.
        Inhibition of integrative repair of the meniscus following acute exposure to interleukin-1 in vitro.
        J Orthop Res. 2008; 26: 504-512
        • Zhang H.
        • Leng P.
        • Zhang J.
        Enhanced meniscal repair by overexpression of hIGF-1 in a full-thickness model.
        Clin Orthop Relat Res. 2009; 467: 3165-3174
        • Sweigart M.A.
        • Zhu C.F.
        • Burt D.M.
        • et al.
        Intraspecies and interspecies comparison of the compressive properties of the medial meniscus.
        Ann Biomed Eng. 2004; 32: 1569-1579
        • Guisasola I.
        • Vaquero J.
        • Forriol F.
        Knee immobilization on meniscal healing after suture: An experimental study in sheep.
        Clin Orthop Relat Res. 2002; : 227-233
        • Huang T.L.
        • Lin G.T.
        • O'Connor S.
        • Chen D.Y.
        • Barmada R.
        Healing potential of experimental meniscal tears in the rabbit. Preliminary results.
        Clin Orthop Relat Res. 1991; : 299-305
        • Roeddecker K.
        • Nagelschmidt M.
        • Koebke J.
        • Guensche K.
        Meniscal healing: A histological study in rabbits.
        Knee Surg Sports Traumatol Arthrosc. 1993; 1: 28-33
        • Maglione D.
        • Guerriero V.
        • Viglietto G.
        • Delli-Bovi P.
        • Persico M.G.
        Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor.
        Proc Natl Acad Sci U S A. 1991; 88: 9267-9271
        • Raab S.
        • Beck H.
        • Gaumann A.
        • et al.
        Impaired brain angiogenesis and neuronal apoptosis induced by conditional homozygous inactivation of vascular endothelial growth factor.
        Thromb Haemost. 2004; 91: 595-605
        • Ferrara N.
        • Davis-Smyth T.
        The biology of vascular endothelial growth factor.
        Endocr Rev. 1997; 18: 4-25
        • Sporn M.B.
        • Roberts A.B.
        • Shull J.H.
        • Smith J.M.
        • Ward J.M.
        • Sodek J.
        Polypeptide transforming growth factors isolated from bovine sources and used for wound healing in vivo.
        Science. 1983; 219: 1329-1331
        • Esparza R.
        • Gortazar A.R.
        • Forriol F.
        Cell study of the three areas of the meniscus: Effect of growth factors in an experimental model in sheep.
        J Orthop Res. 2012; 30: 1647-1651
        • Hickey D.G.
        • Frenkel S.R.
        • Di Cesare P.E.
        Clinical applications of growth factors for articular cartilage repair.
        Am J Orthop (Belle Mead NJ). 2003; 32: 70-76
        • Fuller E.S.
        • Smith M.M.
        • Little C.B.
        • Melrose J.
        Zonal differences in meniscus matrix turnover and cytokine response.
        Osteoarthritis Cartilage. 2012; 20: 49-59
        • Jitsuiki J.
        • Ochi M.
        • Ikuta Y.
        Meniscal repair enhanced by an interpositional free synovial autograft: An experimental study in rabbits.
        Arthroscopy. 1994; 10: 659-666
        • Hunziker E.B.
        • Rosenberg L.C.
        Repair of partial-thickness defects in articular cartilage: Cell recruitment from the synovial membrane.
        J Bone Joint Surg Am. 1996; 78: 721-733
        • Schmidt M.B.
        • Chen E.H.
        • Lynch S.E.
        A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair.
        Osteoarthritis Cartilage. 2006; 14: 403-412
        • Mankan A.K.
        • Kubarenko A.
        • Hornung V.
        Immunology in clinic review series; focus on autoinflammatory diseases: Inflammasomes: Mechanisms of activation.
        Clin Exp Immunol. 2012; 167: 369-381
        • Hatayama K.
        • Higuchi H.
        • Kimura M.
        • et al.
        Histologic changes after meniscal repair using radiofrequency energy in rabbits.
        Arthroscopy. 2007; 23: 299-304