Advertisement
Original Article| Volume 32, ISSUE 6, P1086-1097, June 2016

Suspensory Versus Interference Screw Fixation for Arthroscopic Anterior Cruciate Ligament Reconstruction in a Translational Large-Animal Model

Published:February 04, 2016DOI:https://doi.org/10.1016/j.arthro.2015.11.026

      Purpose

      To compare all-inside cortical-button suspensory fixation in sockets versus interference screw fixation in tunnels with respect to clinical, histologic, and biomechanical assessments of all–soft tissue (AST) tendon autografts used for anterior cruciate ligament (ACL) reconstruction in a canine model.

      Methods

      By use of a validated “hybrid” double-bundle ACL reconstruction technique (reconstruction of the anteromedial bundle with preservation of the native posterolateral bundle), dogs were randomly assigned to undergo either suspensory fixation in sockets (n = 6) or interference screw fixation in tunnels (n = 6). Contralateral knees were used as nonoperated controls (n = 12). Quadrupled extensor tendon autografts were used for both ACL reconstruction groups. Dogs were assessed radiographically and functionally and humanely euthanized at 12 weeks after surgery for arthroscopic, gross, biomechanical, and histologic assessments.

      Results

      Histologic assessments showed significantly (P = .018) better graft incorporation with 4-zone direct healing to bone for the grafts using suspensory fixation in sockets (16.3 ± 1.5) compared with the grafts using interference screw fixation in tunnels (14.2 ± 2.1). Furthermore, graft healing to bone was significantly better at the aperture (P = .05) and mid-socket (P = .01) location for the group that underwent suspensory fixation in sockets (16.1 ± 1.8 and 16.4 ± 1.9, respectively).

      Conclusions

      Suspensory fixation of AST grafts in sockets was associated with superior tendon-to-bone healing compared with interference screw fixation in tunnels, with 4-zone direct graft healing to bone seen for femoral and tibial sockets only in the suspensory-fixation group. Biomechanical properties were similar between groups.

      Clinical Relevance

      These data provide evidence suggesting that an all-inside ACL reconstruction technique using adjustable-loop cortical-button suspensory fixation in bone sockets has potential clinical advantages for ACL reconstruction using AST grafts.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kim S.
        • Bosque J.
        • Meehan J.P.
        • Jamali A.
        • Marder R.
        Increase in outpatient knee arthroscopy in the United States: A comparison of National Surveys of Ambulatory Surgery, 1996 and 2006.
        J Bone Joint Surg Am. 2011; 93: 994-1000
        • Nagarkatti D.G.
        • McKeon B.P.
        • Donahue B.S.
        • Fulkerson J.P.
        Mechanical evaluation of a soft tissue interference screw in free tendon anterior cruciate ligament graft fixation.
        Am J Sports Med. 2001; 29: 67-71
        • Rowden N.J.
        • Sher D.
        • Rogers G.J.
        • Schindhelm K.
        Anterior cruciate ligament graft fixation. Initial comparison of patellar tendon and semitendinosus autografts in young fresh cadavers.
        Am J Sports Med. 1997; 25: 472-478
        • Weiler A.
        • Peine R.
        • Pashmineh-Azar A.
        • Abel C.
        • Südkamp N.P.
        • Hoffmann R.F.
        Tendon healing in a bone tunnel. Part I: Biomechanical results after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep.
        Arthroscopy. 2002; 18: 113-123
        • Ahmad C.S.
        • Gardner T.R.
        • Groh M.
        • Arnouk J.
        • Levine W.N.
        Mechanical properties of soft tissue femoral fixation devices for anterior cruciate ligament reconstruction.
        Am J Sports Med. 2004; 32: 635-640
        • Cook J.L.
        • Luther J.K.
        • Beetem J.
        • Karnes J.
        • Cook C.R.
        Clinical comparison of a novel extracapsular stabilization procedure and tibial plateau leveling osteotomy for treatment of cranial cruciate ligament deficiency in dogs.
        Vet Surg. 2010; 39: 315-323
        • Milano G.
        • Mulas P.D.
        • Ziranu F.
        • Piras S.
        • Manunta A.
        • Fabbriciani C.
        Comparison between different femoral fixation devices for ACL reconstruction with doubled hamstring tendon graft: A biomechanical analysis.
        Arthroscopy. 2006; 22: 660-668
        • Ishibashi Y.
        • Toh S.
        • Okamura Y.
        • Sasaki T.
        • Kusumi T.
        Graft incorporation within the tibial bone tunnel after anterior cruciate ligament reconstruction with bone-patellar tendon-bone autograft.
        Am J Sports Med. 2001; 29: 473-479
        • Hoher J.
        • Livesay G.A.
        • Ma C.B.
        • Withrow J.D.
        • Fu F.H.
        • Woo S.L.
        Hamstring graft motion in the femoral bone tunnel when using titanium button/polyester tape fixation.
        Knee Surg Sports Traumatol Arthrosc. 1999; 7: 215-219
        • Rodeo S.A.
        • Kawamura S.
        • Kim H.J.
        • Dynybil C.
        • Ying L.
        Tendon healing in a bone tunnel differs at the tunnel entrance versus the tunnel exit: An effect of graft-tunnel motion?.
        Am J Sports Med. 2006; 34: 1790-1800
        • Scheffler S.U.
        • Unterhauser F.N.
        • Weiler A.
        Graft remodeling and ligamentization after cruciate ligament reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2008; 16: 834-842
        • Tsuda E.
        • Fukuda Y.
        • Loh J.C.
        • Debski R.E.
        • Fu F.H.
        • Woo S.L.
        The effect of soft-tissue graft fixation in anterior cruciate ligament reconstruction on graft-tunnel motion under anterior tibial loading.
        Arthroscopy. 2002; 18: 960-967
        • Kousa P.
        • Järvinen T.L.
        • Vihavainen M.
        • Kannus P.
        • Järvinen M.
        The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part I: Femoral site.
        Am J Sports Med. 2003; 31: 174-181
        • Kousa P.
        • Järvinen T.L.
        • Vihavainen M.
        • Kannus P.
        • Järvinen M.
        The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part II: Tibial site.
        Am J Sports Med. 2003; 31: 182-188
        • Lui P.P.
        • Ho G.
        • Lee Y.W.
        • Ho P.Y.
        • Lo W.N.
        • Lo C.K.
        Validation of a histologic scoring system for the examination of quality of tendon graft to bone tunnel healing in anterior cruciate ligament reconstruction.
        Anal Quant Cytol Histol. 2011; 33: 36-49
        • Tomihara T.
        • Ohashi H.
        • Yo H.
        Comparison of direct and indirect interference screw fixation for tendon graft in rabbits.
        Knee Surg Sports Traumatol Arthrosc. 2007; 15: 26-30
        • Petre B.M.
        • Smith S.D.
        • Jansson K.S.
        • et al.
        Femoral cortical suspension devices for soft tissue anterior cruciate ligament reconstruction: A comparative biomechanical study.
        Am J Sports Med. 2013; 41: 416-422
        • Lubowitz J.H.
        • Ahmad C.S.
        • Anderson K.
        All-inside anterior cruciate ligament graft-link technique: Second-generation, no-incision anterior cruciate ligament reconstruction.
        Arthroscopy. 2011; 27: 717-727
        • Lubowitz J.L.
        • Schwartzberg R.
        • Smith P.
        Randomized controlled trial comparing all-inside anterior cruciate ligament reconstruction technique with anterior cruciate ligament reconstruction with a full tibial tunnel.
        Arthroscopy. 2013; 29: 1195-1200
        • Benea H.
        • d’Astorg H.
        • Klouche S.
        • Bauer T.
        • Tomoaia G.
        • Hardy P.
        Pain evaluation after all-inside anterior cruciate ligament reconstruction and short term functional results of a prospective randomized study.
        Knee. 2014; 21: 102-106
        • Morrison J.B.
        The mechanics of the knee joint in relation to normal walking.
        J Biomech. 1970; 3: 51-61
        • Shelburne K.B.
        • Pandy M.G.
        Determinants of cruciate-ligament loading during rehabilitation exercise.
        Clin Biomech (Bristol, Avon). 1998; 13: 403-413
        • Shelburne K.B.
        • Pandy M.G.
        A dynamic model of the knee and lower limb for simulating rising movements.
        Comput Methods Biomech Biomed Engin. 2002; 5: 149-159
        • Shelburne K.B.
        • Pandy M.G.
        • Anderson F.C.
        • Torry M.R.
        Pattern of anterior cruciate ligament force in normal walking.
        J Biomech. 2004; 37: 797-805
        • Ekdahl M.
        • Wang J.H.
        • Ronga M.
        • Fu F.H.
        Graft healing in anterior cruciate ligament reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2008; 16: 935-947
        • Smith P.A.
        • DeBerardino T.M.
        Tibial fixation properties of a continuous-loop ACL hamstring graft construct with suspensory fixation in porcine bone.
        J Knee Surg. 2015; 28: 506-512
        • Weiler A.
        • Hoffmann R.F.
        • Bail H.J.
        • Rehm O.
        • Südkamp N.P.
        Tendon healing in a bone tunnel. Part II: Histologic analysis after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep.
        Arthroscopy. 2002; 18: 124-135
        • Cook J.L.
        • Smith P.A.
        • Stannard J.P.
        • et al.
        A canine hybrid double-bundle model for study of arthroscopic ACL reconstruction.
        J Orthop Res. 2015; 33: 1171-1179
        • Lopez M.J.
        • Markel M.D.
        Anterior cruciate ligament rupture after thermal treatment in a canine model.
        Am J Sports Med. 2003; 31: 164-167
        • Conzemius M.G.
        • Evans R.B.
        • Besancon M.F.
        • et al.
        Effect of surgical technique on limb function after surgery for rupture of the cranial cruciate ligament in dogs.
        J Am Vet Med Assoc. 2005; 226: 232-236
        • Cook J.L.
        Cranial cruciate ligament disease in dogs: Biology versus biomechanics.
        Vet Surg. 2010; 39: 270-277
        • Choate C.J.
        • Lewis D.D.
        • Conrad B.P.
        • Horodyski M.B.
        • Pozzi A.
        Assessment of the craniocaudal stability of four extracapsular stabilization techniques during two cyclic loading protocols: A cadaver study.
        Vet Surg. 2013; 42: 853-859
        • Cook J.L.
        • Fox D.B.
        • Malaviya P.
        • et al.
        Long-term outcome for large meniscal defects treated with small intestinal submucosa in a dog model.
        Am J Sports Med. 2006; 34: 32-42
        • Cook J.L.
        • Hung C.T.
        • Kuroki K.
        • et al.
        Animal models of cartilage repair.
        Bone Joint Res. 2014; 3: 89-94
        • Hamner D.L.
        • Brown Jr., C.H.
        • Steiner M.E.
        • Hecker A.T.
        • Hayes W.C.
        Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: Biomechanical evaluation of the use of multiple strands and tensioning techniques.
        J Bone Joint Surg Am. 1999; 81: 549-557
        • Noyes F.R.
        • Butler D.L.
        • Grood E.S.
        • Zernicke R.F.
        • Hefzy M.S.
        Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions.
        J Bone Joint Surg Am. 1984; 66: 344-352
        • McCarthy M.M.
        • Graziano J.
        • Green D.W.
        • Cordasco F.A.
        All-epiphyseal, all-inside anterior cruciate ligament reconstruction technique for skeletally immature patients.
        Arthrosc Tech. 2012; 22: e231-e239
        • Nawabi D.H.
        • Jones K.J.
        • Lurie B.
        • Potter H.G.
        • Green D.W.
        • Cordasco F.A.
        All-inside, physeal-sparing anterior cruciate ligament reconstruction does not significantly compromise the physis in skeletally immature athletes: A postoperative physeal magnetic resonance imaging analysis.
        Am J Sports Med. 2014; 42: 2933-2940
        • Rodeo S.A.
        • Arnoczky S.P.
        • Torzilli P.A.
        • Hidaka C.
        • Warren R.F.
        Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog.
        J Bone Joint Surg Am. 1993; 75: 1795-1803
        • Blickenstaff K.R.
        • Grana W.A.
        • Egle D.
        Analysis of a semitendinosus autograft in a rabbit model.
        Am J Sports Med. 1997; 25: 554-559
        • Clatworthy M.G.
        • Annear P.
        • Bulow J.U.
        • Bartlett R.J.
        Tunnel widening in anterior cruciate ligament reconstruction: A prospective evaluation of hamstring and patella tendon grafts.
        Knee Surg Sports Traumatol Arthrosc. 1999; 7: 138-145
        • L’Insalata J.C.
        • Klatt B.
        • Fu F.H.
        • Harner C.D.
        Tunnel expansion following anterior cruciate ligament reconstruction: A comparison of hamstring and patellar tendon autografts.
        Knee Surg Sports Traumatol Arthrosc. 1997; 5: 234-238
        • Fealy S.
        • Rodeo S.A.
        • MacGillivray J.D.
        • Nixon A.J.
        • Adler R.S.
        • Warren R.F.
        Biomechanical evaluation of the relation between number of suture anchors and strength of the bone-tendon interface in a goat rotator cuff model.
        Arthroscopy. 2006; 22: 595-602