Advertisement

Clinical Outcomes After Autologous Chondrocyte Implantation in Adolescents' Knees: A Systematic Review

      Purpose

      To perform a systematic review of the use of autologous chondrocyte implantation (ACI) in the adolescent knee. Specific aims: (1) quantify clinical outcomes of ACI in adolescent knees, (2) identify lesion and patient factors that correlate with clinical outcome, and (3) determine the incidence of complications of ACI in adolescents.

      Methods

      PubMed, MEDLINE, SCOPUS, CINAHL, and Cochrane Collaboration Library databases were searched systematically. Outcome scores recorded included the International Knee Documentation Committee score, the International Cartilage Repair Society score, the Knee Injury and Osteoarthritis Outcome Score, the visual analog scale, the Bentley Functional Rating Score, the Modified Cincinnati Rating System, Tegner activity Lysholm scores, and return athletics. Outcome scores were compared among studies based on proportion of adolescents achieving specific outcome quartiles at a minimum 1-year follow-up. Methodologic quality of studies was evaluated by Coleman Methodology Scores (CMSs).

      Results

      Five studies reported on 115 subjects who underwent ACI with periosteal cover (ACI-P; 95, 83%), ACI with type I/type III collagen cover (ACI-C; 6, 5%), or matrix-induced ACI (MACI; 14, 12%). Mean patient age was 16.2 years (range, 11 to 21 years). All studies were case series. Follow-up ranged from 12 to 74 months (mean, 52.3 months). Mean defect size was 5.3 cm2 (range, 0.96 to 14 cm2). All studies reported improvement in clinical outcomes scores. Graft hypertrophy was the most common complication (7.0%). The mean preoperative clinical outcome percentage (based on percentage of outcome scale used) was 37% (standard deviation [SD], 18.9%) and the mean postoperative clinical outcome percentage was 72.7% (SD, 16.9%). The overall percentage increase in clinical outcome scores was 35.7% (SD, 14.2%). Mean CMS was 47.8 (SD, 8.3).

      Conclusions

      Cartilage repair in adolescent knees using ACI provides success across different clinical outcomes measures. The only patient- or lesion-specific factor that influenced clinical outcome was the shorter duration of preoperative symptoms.

      Level of Evidence

      Level IV, systemic review of Level I-IV studies.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bollen S.
        Epidemiology of knee injuries: Diagnosis and triage.
        Br J Sports Med. 2000; 34: 227-228
        • Flanigan D.C.
        • Harris J.D.
        • Trinh T.Q.
        • Siston R.A.
        • Brophy R.H.
        Prevalence of chondral defects in athletes' knees: A systematic review.
        Med Sci Sports Exerc. 2010; 42: 1795-1801
        • Takeda H.
        • Nakagawa T.
        • Nakamura K.
        • Engebretsen L.
        Prevention and management of knee osteoarthritis and knee cartilage injury in sports.
        Br J Sports Med. 2011; 45: 304-309
        • Noyes F.R.
        • Bassett R.W.
        • Grood E.S.
        • Butler D.L.
        Arthroscopy in acute traumatic hemarthrosis of the knee. Incidence of anterior cruciate tears and other injuries.
        J Bone Joint Surg Am. 1980; 62 (757): 687-695
        • Peers S.C.
        • Maerz T.
        • Baker E.A.
        • et al.
        T1rho magnetic resonance imaging for detection of early cartilage changes in knees of asymptomatic collegiate female impact and nonimpact athletes.
        Clin J Sport Med. 2014; 24: 218-225
        • Krishnan S.P.
        • Skinner J.A.
        • Carrington R.W.
        • Flanagan A.M.
        • Briggs T.W.
        • Bentley G.
        Collagen-covered autologous chondrocyte implantation for osteochondritis dissecans of the knee: Two- to seven-year results.
        J Bone Joint Surg Br. 2006; 88: 203-205
        • Curl W.W.
        • Krome J.
        • Gordon E.S.
        • Rushing J.
        • Smith B.P.
        • Poehling G.G.
        Cartilage injuries: A review of 31,516 knee arthroscopies.
        Arthroscopy. 1997; 13: 456-460
        • Widuchowski W.
        • Widuchowski J.
        • Trzaska T.
        Articular cartilage defects: Study of 25,124 knee arthroscopies.
        Knee. 2007; 14: 177-182
        • Buckwalter J.A.
        • Mankin H.J.
        Articular cartilage: Degeneration and osteoarthritis, repair, regeneration, and transplantation.
        Instr Course Lect. 1998; 47: 487-504
        • Spahn G.
        • Hofmann G.O.
        Focal cartilage defects within the medial knee compartment. predictors for osteoarthritis progression.
        Z Orthop Unfall. 2014; 152 ([in German]): 480-488
        • Qi Y.
        • Yan W.
        Mesenchymal stem cell sheet encapsulated cartilage debris provides great potential for cartilage defects repair in osteoarthritis.
        Med Hypotheses. 2012; 79: 420-421
        • Stannus O.P.
        • Jiang D.
        • Cicuttini F.
        • Cao Y.
        • Ding C.
        Cartilage signal intensity on T1-weighted MRI: Association with risk factors and measures of knee osteoarthritis.
        Clin Rheumatol. 2014; 33: 359-368
        • Buckwalter J.A.
        Articular cartilage: Injuries and potential for healing.
        J Orthop Sports Phys Ther. 1998; 28: 192-202
        • Oeppen R.S.
        • Connolly S.A.
        • Bencardino J.T.
        • Jaramillo D.
        Acute injury of the articular cartilage and subchondral bone: A common but unrecognized lesion in the immature knee.
        AJR Am J Roentgenol. 2004; 182: 111-117
        • Landells J.W.
        The reactions of injured human articular cartilage.
        J Bone Joint Surg Br. 1957; 39: 548-562
        • Rosenberg N.J.
        Osteochondral fractures of the lateral femoral condyle.
        J Bone Joint Surg Am. 1964; 46: 1013-1026
        • Laschober G.T.
        • Brunauer R.
        • Jamnig A.
        • et al.
        Age-specific changes of mesenchymal stem cells are paralleled by upregulation of CD106 expression as a response to an inflammatory environment.
        Rejuvenation Res. 2011; 14: 119-131
        • Muschler G.F.
        • Nitto H.
        • Boehm C.A.
        • Easley K.A.
        Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors.
        J Orthop Res. 2001; 19: 117-125
        • Niemeyer P.
        • Porichis S.
        • Steinwachs M.
        • et al.
        Long-term outcomes after first-generation autologous chondrocyte implantation for cartilage defects of the knee.
        Am J Sports Med. 2014; 42: 150-157
        • Steadman J.R.
        • Briggs K.K.
        • Matheny L.M.
        • Guillet A.
        • Hanson C.M.
        • Willimon S.C.
        Outcomes following microfracture of full-thickness articular cartilage lesions of the knee in adolescent patients.
        J Knee Surg. 2015; 28: 145-150
        • Shaha J.S.
        • Cook J.B.
        • Rowles D.J.
        • Bottoni C.R.
        • Shaha S.H.
        • Tokish J.M.
        Return to an athletic lifestyle after osteochondral allograft transplantation of the knee.
        Am J Sports Med. 2013; 41: 2083-2089
        • Bentley G.
        • Biant L.C.
        • Carrington R.W.
        • et al.
        A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee.
        J Bone Joint Surg Br. 2003; 85: 223-230
        • Knutsen G.
        • Drogset J.O.
        • Engebretsen L.
        • et al.
        A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years.
        J Bone Joint Surg Am. 2007; 89: 2105-2112
        • Saris D.B.
        • Vanlauwe J.
        • Victor J.
        • et al.
        Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture.
        Am J Sports Med. 2008; 36: 235-246
        • Liberati A.
        • Altman D.G.
        • Tetzlaff J.
        • et al.
        The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration.
        J Clin Epidemiol. 2009; 62: e1-e34
        • Moher D.
        • Cook D.J.
        • Eastwood S.
        • Olkin I.
        • Rennie D.
        • Stroup D.F.
        Improving the quality of reports of meta-analyses of randomised controlled trials: the QUOROM statement. Quality of Reporting of Meta-analyses.
        Lancet. 1999; 354: 1896-1900
        • Obremskey W.T.
        • Pappas N.
        • Attallah-Wasif E.
        • Tornetta 3rd, P.
        • Bhandari M.
        Level of evidence in orthopaedic journals.
        J Bone Joint Surg Am. 2005; 87: 2632-2638
        • Schmal H.
        • Pestka J.M.
        • Salzmann G.
        • Strohm P.C.
        • Sudkamp N.P.
        • Niemeyer P.
        Autologous chondrocyte implantation in children and adolescents.
        Knee Surg Sports Traumatol Arthrosc. 2013; 21: 671-677
        • Dai X.S.
        • Cai Y.Z.
        Matrix-induced autologous chondrocyte implantation addressing focal chondral defect in adolescent knee.
        Chin Med J (Engl). 2012; 125: 4130-4133
        • Macmull S.
        • Parratt M.T.
        • Bentley G.
        • et al.
        Autologous chondrocyte implantation in the adolescent knee.
        Am J Sports Med. 2011; 39: 1723-1730
        • Micheli L.J.
        • Moseley J.B.
        • Anderson A.F.
        • et al.
        Articular cartilage defects of the distal femur in children and adolescents: treatment with autologous chondrocyte implantation.
        J Pediatr Orthop. 2006; 26: 455-460
        • Mithöfer K.
        • Minas T.
        • Peterson L.
        • Yeon H.
        • Micheli L.J.
        Functional outcome of knee articular cartilage repair in adolescent athletes.
        Am J Sports Med. 2005; 33: 1147-1153
        • Teo B.J.
        • Buhary K.
        • Tai B.C.
        • Hui J.H.
        Cell-based therapy improves function in adolescents and young adults with patellar osteochondritis dissecans.
        Clin Orthop Relat Res. 2013; 471: 1152-1158
        • Tallon C.
        • Coleman B.D.
        • Khan K.M.
        • Maffulli N.
        Outcome of surgery for chronic Achilles tendinopathy. A critical review.
        Am J Sports Med. 2001; 29: 315-320
        • Coleman B.D.
        • Khan K.M.
        • Maffulli N.
        • Cook J.L.
        • Wark J.D.
        Studies of surgical outcome after patellar tendinopathy: Clinical significance of methodological deficiencies and guidelines for future studies. Victorian Institute of Sport Tendon Study Group.
        Scand J Med Sci Sports. 2000; 10: 2-11
        • Brittberg M.
        • Lindahl A.
        • Nilsson A.
        • Ohlsson C.
        • Isaksson O.
        • Peterson L.
        Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation.
        N Engl J Med. 1994; 331: 889-895
        • Clave A.
        • Potel J.F.
        • Servien E.
        • Neyret P.
        • Dubrana F.
        • Stindel E.
        Third-generation autologous chondrocyte implantation versus mosaicplasty for knee cartilage injury: 2-year randomized trial.
        J Orthop Res. 2016; 34: 658-665
        • Pestka J.M.
        • Feucht M.J.
        • Porichis S.
        • Bode G.
        • Sudkamp N.P.
        • Niemeyer P.
        Return to sports activity and work after autologous chondrocyte implantation of the knee: Which factors influence outcomes?.
        Am J Sports Med. 2016; 44: 370-377
        • Rosa D.
        • Balato G.
        • Ciaramella G.
        • Soscia E.
        • Improta G.
        • Triassi M.
        Long-term clinical results and MRI changes after autologous chondrocyte implantation in the knee of young and active middle aged patients.
        J Orthop Traumatol. 2016; 17: 55-62
        • Mundi R.
        • Bedi A.
        • Chow L.
        • et al.
        Cartilage restoration of the knee: A systematic review and meta-analysis of Level 1 studies.
        Am J Sports Med. July 2, 2015; ([Epub ahead of print])
        • Niethammer T.R.
        • Limbrunner K.
        • Betz O.B.
        • et al.
        Analysis of the autologous chondrocyte quality of matrix-based autologous chondrocyte implantation in the knee joint.
        Int Orthop. 2016; 40: 205-212
        • Niethammer T.R.
        • Muller P.E.
        • Safi E.
        • et al.
        Early resumption of physical activities leads to inferior clinical outcomes after matrix-based autologous chondrocyte implantation in the knee.
        Knee Surg Sports Traumatol Arthrosc. 2014; 22: 1345-1352
        • Oussedik S.
        • Tsitskaris K.
        • Parker D.
        Treatment of articular cartilage lesions of the knee by microfracture or autologous chondrocyte implantation: A systematic review.
        Arthroscopy. 2015; 31: 732-744
        • Ebert J.R.
        • Fallon M.
        • Smith A.
        • Janes G.C.
        • Wood D.J.
        Prospective clinical and radiologic evaluation of patellofemoral matrix-induced autologous chondrocyte implantation.
        Am J Sports Med. 2015; 43: 1362-1372
        • Smith G.D.
        • Knutsen G.
        • Richardson J.B.
        A clinical review of cartilage repair techniques.
        J Bone Joint Surg Br. 2005; 87: 445-449
        • Messner K.
        • Maletius W.
        The long-term prognosis for severe damage to weight-bearing cartilage in the knee: A 14-year clinical and radiographic follow-up in 28 young athletes.
        Acta Orthop Scand. 1996; 67: 165-168
        • Tew S.
        • Redman S.
        • Kwan A.
        • et al.
        Differences in repair responses between immature and mature cartilage.
        Clin Orthop Relat Res. 2001; : S142-S152
        • Convery F.R.
        • Akeson W.H.
        • Keown G.H.
        The repair of large osteochondral defects. An experimental study in horses.
        Clin Orthop Relat Res. 1972; 82: 253-262
        • Mankin H.J.
        The response of articular cartilage to mechanical injury.
        J Bone Joint Surg Am. 1982; 64: 460-466
        • Buckwalter J.A.
        Articular cartilage injuries.
        Clin Orthop Relat Res. 2002; : 21-37
        • Moti A.W.
        • Micheli L.J.
        Meniscal and articular cartilage injury in the skeletally immature knee.
        Instr Course Lect. 2003; 52: 683-690
        • Piasecki D.P.
        • Spindler K.P.
        • Warren T.A.
        • Andrish J.T.
        • Parker R.D.
        Intraarticular injuries associated with anterior cruciate ligament tear: Findings at ligament reconstruction in high school and recreational athletes. An analysis of sex-based differences.
        Am J Sports Med. 2003; 31: 601-605
        • Cain E.L.
        • Clancy W.G.
        Treatment algorithm for osteochondral injuries of the knee.
        Clin Sports Med. 2001; 20: 321-342
        • Nawaz S.Z.
        • Bentley G.
        • Briggs T.W.
        • et al.
        Autologous chondrocyte implantation in the knee: Mid-term to long-term results.
        J Bone Joint Surg Am. 2014; 96: 824-830
        • Moradi B.
        • Schonit E.
        • Nierhoff C.
        • et al.
        First-generation autologous chondrocyte implantation in patients with cartilage defects of the knee: 7 to 14 years' clinical and magnetic resonance imaging follow-up evaluation.
        Arthroscopy. 2012; 28: 1851-1861
        • Gooding C.R.
        • Bartlett W.
        • Bentley G.
        • Skinner J.A.
        • Carrington R.
        • Flanagan A.
        A prospective, randomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: Periosteum covered versus type I/III collagen covered.
        Knee. 2006; 13: 203-210
        • Behery O.A.
        • Harris J.D.
        • Karnes J.M.
        • Siston R.A.
        • Flanigan D.C.
        Factors influencing the outcome of autologous chondrocyte implantation: A systematic review.
        J Knee Surg. 2013; 26: 203-211
        • Lindahl A.
        • Isgaard J.
        • Carlsson L.
        • Isaksson O.G.
        Differential effects of growth hormone and insulin-like growth factor I on colony formation of epiphyseal chondrocytes in suspension culture in rats of different ages.
        Endocrinology. 1987; 121: 1061-1069
        • Hefti F.
        • Beguiristain J.
        • Krauspe R.
        • et al.
        Osteochondritis dissecans: A multicenter study of the European Pediatric Orthopedic Society.
        J Pediatr Orthop B. 1999; 8: 231-245
        • Kaszkin-Bettag M.
        Is autologous chondrocyte implantation (ACI) an adequate treatment option for repair of cartilage defects in paediatric patients?.
        Drug Discov Today. 2013; 18: 740-747