Finite Element Analysis of the Biomechanical Effects of 3 Posterolateral Corner Reconstruction Techniques for the Knee Joint


      To compare the forces exerted on the cruciate ligaments and the contact stresses on the tibiofemoral (TF) and patellofemoral (PF) joints with respect to 3 different tibial- and fibular-based posterolateral corner (PLC) reconstructions under dynamic loading conditions.


      A subject-specific finite element knee model was developed by using 3-dimensional anatomic data from motion captures in gait and squat activities, including in vivo knee joint kinematics and muscle forces for the single subject. Cruciate ligament forces and contact stresses on the TF and PF joints under 3 PLC reconstruction techniques (tibial-based, TBR; modified fibular-based, mFBR; conventional fibular-based, cFBR) and PLC-deficient models were compared with those of the intact model in gait and squat loading conditions.


      The cruciate ligament forces in the 3 surgical models differed from those in the intact model. The greatest differences in ligament forces from the intact model were found in the cFBR model, whereas there were no remarkable differences between the TBR and mFBR models in both gait and squat loading conditions. Contact stresses on the lateral TF and PF joints of the 3 surgical models were greater than those of the intact model under the squat loading condition.


      The biomechanical effects achieved using the anatomic reconstruction technique were found to be improved compared with those using nonanatomic reconstruction techniques. However, the ligament forces and contact stresses under normal conditions could not be restored through any of the 3 techniques.

      Clinical Relevance

      Anatomic TBR and FBR for grade III PLC injuries could restore better biomechanics in the knee joint compared with nonanatomic reconstruction. However, discrepancy with the normal condition requires further modification of surgical techniques.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Rauh P.B.
        • Clancy Jr., W.G.
        • Jasper L.E.
        • Curl L.A.
        • Belkoff S.
        • Moorman 3rd, C.T.
        Biomechanical evaluation of two reconstruction techniques for posterolateral instability of the knee.
        J Bone Joint Surg Br. 2010; 92: 1460-1465
        • Nielsen S.
        • Helmig P.
        Posterior instability of the knee joint. An experimental study.
        Arch Orthop Trauma Surg. 1986; 105: 121-125
        • Covey D.C.
        Injuries of the posterolateral corner of the knee.
        J Bone Joint Surg Am. 2001; 83: 106-118
        • Gollehon D.L.
        • Torzilli P.A.
        • Warren R.F.
        The role of the posterolateral and cruciate ligaments in the stability of the human knee. A biomechanical study.
        J Bone Joint Surg Am. 1987; 69: 233-242
        • DeLee J.C.
        • Riley M.B.
        • Rockwood Jr., C.A.
        Acute posterolateral rotatory instability of the knee.
        Am J Sports Med. 1983; 11: 199-207
        • O'Brien S.J.
        • Warren R.F.
        • Pavlov H.
        • Panariello R.
        • Wickiewicz T.L.
        Reconstruction of the chronically insufficient anterior cruciate ligament with the central third of the patellar ligament.
        J Bone Joint Surg Am. 1991; 73: 278-286
        • LaPrade R.F.
        • Resig S.
        • Wentorf F.
        • Lewis J.L.
        The effects of grade III posterolateral knee complex injuries on anterior cruciate ligament graft force. A biomechanical analysis.
        Am J Sports Med. 1999; 27: 469-475
        • Fanelli G.C.
        • Larson R.V.
        Practical management of posterolateral instability of the knee.
        Arthroscopy. 2002; 18: 1-8
        • Larson R.V.
        Isometry of the lateral collateral and popliteofibular ligaments and techniques for reconstruction using a free semitendinosus tendon graft.
        Oper Tech Sports Med. 2001; 9: 84-90
        • Kim S.J.
        • Park I.S.
        • Cheon Y.M.
        • Ryu S.W.
        New technique for chronic posterolateral instability of the knee: Posterolateral reconstruction using the tibialis posterior tendon allograft.
        Arthroscopy. 2004; 20: 195-200
        • Geeslin A.G.
        • Moulton S.G.
        • LaPrade R.F.
        A systematic review of the outcomes of posterolateral corner knee injuries, Part 1: Surgical treatment of acute injuries.
        Am J Sports Med. 2016; 44: 1336-1342
        • Moulton S.G.
        • Geeslin A.G.
        • LaPrade R.F.
        A systematic review of the outcomes of posterolateral corner knee injuries, Part 2: Surgical treatment of chronic injuries.
        Am J Sports Med. 2015; 44: 1616-1623
        • Yoon K.H.
        • Lee J.H.
        • Bae D.K.
        • Song S.J.
        • Chung K.Y.
        • Park Y.W.
        Comparison of clinical results of anatomic posterolateral corner reconstruction for posterolateral rotatory instability of the knee with or without popliteal tendon reconstruction.
        Am J Sports Med. 2011; 39: 2421-2428
        • Markolf K.L.
        • Graves B.R.
        • Sigward S.M.
        • Jackson S.R.
        • McAllister D.R.
        How well do anatomical reconstructions of the posterolateral corner restore varus stability to the posterior cruciate ligament-reconstructed knee?.
        Am J Sports Med. 2007; 35: 1117-1122
        • Feeley B.T.
        • Muller M.S.
        • Sherman S.
        • Allen A.A.
        • Pearle A.D.
        Comparison of posterolateral corner reconstructions using computer-assisted navigation.
        Arthroscopy. 2010; 26: 1088-1095
        • Dickens J.F.
        • Kilcoyne K.
        • Kluk M.
        • Rue J.P.
        The posterolateral corner: Surgical approach and technique overview.
        J Knee Surg. 2011; 24: 151-158
        • Kim S.J.
        • Kim H.S.
        • Moon H.K.
        • Chang W.H.
        • Kim S.G.
        • Chun Y.M.
        A biomechanical comparison of 3 reconstruction techniques for posterolateral instability of the knee in a cadaveric model.
        Arthroscopy. 2010; 26: 335-341
        • Nau T.
        • Chevalier Y.
        • Hagemeister N.
        • Deguise J.A.
        • Duval N.
        Comparison of 2 surgical techniques of posterolateral corner reconstruction of the knee.
        Am J Sports Med. 2005; 33: 1838-1845
        • Akbarshahi M.
        • Fernandez J.W.
        • Schache A.G.
        • Pandy M.G.
        Subject-specific evaluation of patellofemoral joint biomechanics during functional activity.
        Med Eng Phys. 2014; 36: 1122-1133
        • Kiapour A.
        • Kiapour A.M.
        • Kaul V.
        • et al.
        Finite element model of the knee for investigation of injury mechanisms: development and validation.
        J Biomech Eng. 2014; 136: 011002
        • Carter D.R.
        • Beaupre G.S.
        • Wong M.
        • Smith R.L.
        • Andriacchi T.P.
        • Schurman D.J.
        The mechanobiology of articular cartilage development and degeneration.
        Clin Orthop Relat Res. 2004; : S69-S77
        • Adouni M.
        • Shirazi-Adl A.
        Evaluation of knee joint muscle forces and tissue stresses-strains during gait in severe OA versus normal subjects.
        J Orthop Res. 2014; 32: 69-78
        • Lloyd D.G.
        • Besier T.F.
        An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo.
        J Biomech. 2003; 36: 765-776
        • Chen Z.
        • Zhang X.
        • Ardestani M.M.
        • et al.
        Prediction of in vivo joint mechanics of an artificial knee implant using rigid multi-body dynamics with elastic contacts.
        Proc Inst Mech Eng H. 2014; 228: 564-575
        • Kim Y.S.
        • Kang K.T.
        • Son J.
        • et al.
        Graft extrusion related to the position of allograft in lateral meniscal allograft transplantation: Biomechanical comparison between parapatellar and transpatellar approaches using finite element analysis.
        Arthroscopy. 2015; 31: 2380-2391
        • Piefer J.W.
        • Pflugner T.R.
        • Hwang M.D.
        • Lubowitz J.H.
        Anterior cruciate ligament femoral footprint anatomy: Systematic review of the 21st century literature.
        Arthroscopy. 2012; 28: 872-881
        • Bowman Jr., K.F.
        • Sekiya J.K.
        Anatomy and biomechanics of the posterior cruciate ligament, medial and lateral sides of the knee.
        Sports Med Arthrosc. 2010; 18: 222-229
        • Baldwin J.L.
        The anatomy of the medial patellofemoral ligament.
        Am J Sports Med. 2009; 37: 2355-2361
        • Kang K.T.
        • Koh Y.G.
        • Jung M.
        • et al.
        The effects of posterior cruciate ligament deficiency on posterolateral corner structures under gait- and squat-loading conditions: A computational knee model.
        Bone Joint Res. 2017; 6: 31-42
        • Blankevoort L.
        • Huiskes R.
        Ligament-bone interaction in a three-dimensional model of the knee.
        J Biomech Eng. 1991; 113: 263-269
        • Shelburne K.B.
        • Torry M.R.
        • Pandy M.G.
        Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait.
        J Orthop Res. 2006; 24: 1983-1990
        • Marra M.A.
        • Vanheule V.
        • Fluit R.
        • et al.
        A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty.
        J Biomech Eng. 2015; 137: 020904
        • Li G.
        • Gil J.
        • Kanamori A.
        • Woo S.L.
        A validated three-dimensional computational model of a human knee joint.
        J Biomech Eng. 1999; 121: 657-662
        • Terry G.C.
        • LaPrade R.F.
        The biceps femoris muscle complex at the knee. Its anatomy and injury patterns associated with acute anterolateral-anteromedial rotatory instability.
        Am J Sports Med. 1996; 24: 2-8
      1. Kang KT, Kim SH, Son J, Lee YH, Kim S, Chun HJ. Probabilistic evaluation of the material properties of the in vivo subject-specific articular surface using a computational model [published online April 15, 2016]. J Biomed Mater Res B Appl Biomater. doi:10.1002/jbm.b.33666.

        • Peña E.
        • Calvo B.
        • Martinez M.A.
        • Palanca D.
        • Doblaré M.
        Why lateral meniscectomy is more dangerous than medial meniscectomy. A finite element study.
        J Orthop Res. 2006; 24: 1001-1010
        • Haut Donahue T.L.
        • Hull M.
        • Rashid M.M.
        • Jacobs C.R.
        How the stiffness of meniscal attachments and meniscal material properties affect tibio-femoral contact pressure computed using a validated finite element model of the human knee joint.
        J Biomech. 2003; 36: 19-34
        • Shepherd D.
        • Seedhom B.
        The “instantaneous” compressive modulus of human articular cartilage in joints of the lower limb.
        Rheumatology. 1999; 38: 124-132
        • Kim S.J.
        • Chang C.B.
        • Choi C.H.
        • et al.
        Intertunnel relationships in combined anterior cruciate ligament and posterolateral corner reconstruction: An in vivo 3-dimensional anatomic study.
        Am J Sports Med. 2013; 41: 849-857
        • Kim S.J.
        • Kim S.H.
        Posterior cruciate ligament reconstruction—remnant-preserving technique through the posteromedial portal.
        in: Scott W.N. Insall J.N. Insall & Scott surgery of the knee. Elsevier/Churchill Livingstone, Philadelphia, PA2012
        • Noyes F.R.
        • Barber-Westin S.D.
        Posterolateral knee reconstruction with an anatomical bone-patellar tendon-bone reconstruction of the fibular collateral ligament.
        Am J Sports Med. 2007; 35: 259-273
        • Chun Y.M.
        • Kim S.J.
        • Kim H.S.
        Evaluation of the mechanical properties of posterolateral structures and supporting posterolateral instability of the knee.
        J Orthop Res. 2008; 26: 1371-1376
        • Wang L.
        • Lin L.
        • Feng Y.
        • et al.
        Anterior cruciate ligament reconstruction and cartilage contact forces—A 3D computational simulation.
        Clin Biomech (Bristol, Avon). 2015; 30: 1175-1180
        • Adouni M.
        • Shirazi-Adl A.
        • Shirazi R.
        Computational biodynamics of human knee joint in gait: from muscle forces to cartilage stresses.
        J Biomech. 2012; 45: 2149-2156
        • Adouni M.
        • Shirazi-Adl A.
        Consideration of equilibrium equations at the hip joint alongside those at the knee and ankle joints has mixed effects on knee joint response during gait.
        J Biomech. 2013; 46: 619-624
        • Hughston J.C.
        • Jacobson K.E.
        Chronic posterolateral rotatory instability of the knee.
        J Bone Joint Surg Am. 1985; 67: 351-359
        • Kim S.J.
        • Shin S.J.
        • Choi C.H.
        • Kim H.C.
        Reconstruction by biceps tendon rerouting for posterolateral rotatory instability of the knee: Modification of the Clancy technique.
        Arthroscopy. 2001; 17: 664-667
        • LaPrade R.F.
        • Wozniczka J.K.
        • Stellmaker M.P.
        • Wijdicks C.A.
        Analysis of the static function of the popliteus tendon and evaluation of an anatomic reconstruction: The “fifth ligament” of the knee.
        Am J Sports Med. 2010; 38: 543-549
        • Kim S.J.
        • Kim S.H.
        • Chun Y.M.
        • Hwang B.Y.
        • Choi D.H.
        • Yoon J.Y.
        Clinical comparison of conventional and remnant-preserving transtibial single-bundle posterior cruciate ligament reconstruction combined with posterolateral corner reconstruction.
        Am J Sports Med. 2012; 40: 640-649
        • Kim S.J.
        • Lee S.K.
        • Kim S.H.
        • Kim S.H.
        • Jung M.
        Clinical outcomes for reconstruction of the posterolateral corner and posterior cruciate ligament in injuries with mild grade 2 or less posterior translation: comparison with isolated posterolateral corner reconstruction.
        Am J Sports Med. 2013; 41: 1613-1620
        • Jabara M.
        • Bradley J.
        • Merrick M.
        Is stability of the proximal tibiofibular joint important in the multiligament-injured knee?.
        Clin Orthop Relat Res. 2014; 472: 2691-2697
        • Arciero R.A.
        Anatomic posterolateral corner knee reconstruction.
        Arthroscopy. 2005; 21: 1147
        • Bohm K.C.
        • Sikka R.S.
        • Boyd J.L.
        • Yonke B.
        • Tompkins M.
        Part I: An anatomic-based tunnel in the fibular head for posterolateral corner reconstruction using magnetic resonance imaging.
        Knee Surg Sports Traumatol Arthrosc. 2015; 23: 1889-1894
        • Schechinger S.J.
        • Levy B.A.
        • Dajani K.A.
        • Shah J.P.
        • Herrera D.A.
        • Marx R.G.
        Achilles tendon allograft reconstruction of the fibular collateral ligament and posterolateral corner.
        Arthroscopy. 2009; 25: 232-242
        • Wechter J.F.
        • Bohm K.C.
        • Macalena J.A.
        • Sikka R.S.
        • Tompkins M.
        Part II: The 50 degrees/60 degrees fibular tunnel trajectory for posterolateral corner reconstruction in a cadaver model.
        Knee Surg Sports Traumatol Arthrosc. 2015; 23: 1895-1899
        • LaPrade R.F.
        • Johansen S.
        • Wentorf F.A.
        • Engebretsen L.
        • Esterberg J.L.
        • Tso A.
        An analysis of an anatomical posterolateral knee reconstruction: an in vitro biomechanical study and development of a surgical technique.
        Am J Sports Med. 2004; 32: 1405-1414
        • Kim S.J.
        • Kim S.G.
        • Lee I.S.
        • et al.
        Effect of physiological posterolateral rotatory laxity on early results of posterior cruciate ligament reconstruction with posterolateral corner reconstruction.
        J Bone Joint Surg Am. 2013; 95: 1222-1227
        • Kim S.J.
        • Kim T.W.
        • Kim S.G.
        • Kim H.P.
        • Chun Y.M.
        Clinical comparisons of the anatomical reconstruction and modified biceps rerouting technique for chronic posterolateral instability combined with posterior cruciate ligament reconstruction.
        J Bone Joint Surg Am. 2011; 93: 809-818