Advertisement
Original Article| Volume 33, ISSUE 12, P2198-2207, December 2017

Download started.

Ok

Similar Outcomes After Osteochondral Allograft Transplantation in Anterior Cruciate Ligament-Intact and -Reconstructed Knees: A Comparative Matched-Group Analysis With Minimum 2-Year Follow-Up

      Purpose

      To compare failure rates and clinical outcomes of osteochondral allograft transplantation (OCA) in anterior cruciate ligament (ACL)-intact versus ACL-reconstructed knees at midterm follow-up.

      Methods

      After a priori power analysis, a prospective registry of patients treated with OCA for focal chondral lesions ≥2 cm2 in size with minimum 2-year follow-up was used to match ACL-reconstructed knees with ACL-intact knees by age, sex, and primary chondral defect location. Exclusion criteria included meniscus transplantation, realignment osteotomy, or other ligamentous injury. Complications, reoperations, and patient responses to validated outcome measures were reviewed. Failure was defined by any procedure involving allograft removal/revision or conversion to arthroplasty. Kaplan-Meier analysis and multivariate Cox regression were performed to evaluate the association of ACL reconstruction (ACLR) with failure.

      Results

      A total of 50 ACL-intact and 25 ACL-reconstructed (18 prior, 7 concomitant) OCA patients were analyzed. The mean age was 36.2 years (range, 14-62 years). Mean follow-up was 3.9 years (range, 2-14 years). Patient demographics and chondral lesion characteristics were similar between groups. ACL-reconstructed patients averaged 2.2 ± 1.9 prior surgeries on the ipsilateral knee compared with 1.4 ± 1.4 surgeries for ACL-intact patients (P = .014). Grafts used for the last ACLR included bone-patellar tendon-bone autograft, hamstring autograft, Achilles tendon allograft, and tibialis allograft (data available for only 11 of 25 patients). At final follow-up, 22% of ACL-intact and 32% of ACL-reconstructed patients had undergone reoperation. OCA survivorship was 90% and 96% at 2 years and 79% and 85% at 5 years in ACL-intact and ACL-reconstructed patients, respectively (P = .774). ACLR was not independently associated with failure. Both groups demonstrated clinically significant improvements in the Short Form-36 pain and physical functioning, International Knee Documentation Committee subjective, and Knee Outcome Survey—Activities of Daily Living scores at final follow-up (P < .001), with no significant differences in preoperative, postoperative, and change scores between groups.

      Conclusions

      OCA in the setting of prior or concomitant ACLR does not portend higher failure rates or compromise clinical outcomes.

      Level of Evidence

      Level III, retrospective comparative study.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gross A.E.
        • Kim W.
        • Las Heras F.
        • Backstein D.
        • Safir O.
        • Pritzker K.P.
        Fresh osteochondral allografts for posttraumatic knee defects: long-term followup.
        Clin Orthop Relat Res. 2008; 466: 1863-1870
        • Williams 3rd, R.J.
        • Ranawat A.S.
        • Potter H.G.
        • Carter T.
        • Warren R.F.
        Fresh stored allografts for the treatment of osteochondral defects of the knee.
        J Bone Joint Surg Am. 2007; 89: 718-726
        • Levy Y.D.
        • Gortz S.
        • Pulido P.A.
        • McCauley J.C.
        • Bugbee W.D.
        Do fresh osteochondral allografts successfully treat femoral condyle lesions?.
        Clin Orthop Relat Res. 2013; 471: 231-237
        • Cameron J.I.
        • Pulido P.A.
        • McCauley J.C.
        • Bugbee W.D.
        Osteochondral allograft transplantation of the femoral trochlea.
        Am J Sports Med. 2016; 44: 633-638
        • Gracitelli G.C.
        • Meric G.
        • Pulido P.A.
        • Gortz S.
        • De Young A.J.
        • Bugbee W.D.
        Fresh osteochondral allograft transplantation for isolated patellar cartilage injury.
        Am J Sports Med. 2015; 43: 879-884
        • Meric G.
        • Gracitelli G.C.
        • Gortz S.
        • De Young A.J.
        • Bugbee W.D.
        Fresh osteochondral allograft transplantation for bipolar reciprocal osteochondral lesions of the knee.
        Am J Sports Med. 2015; 43: 709-714
        • Frank R.M.
        • Lee S.
        • Levy D.
        • et al.
        Osteochondral allograft transplantation of the knee: analysis of failures at 5 years.
        Am J Sports Med. 2017; 45: 864-874
        • Krych A.J.
        • Robertson C.M.
        • Williams 3rd, R.J.
        Return to athletic activity after osteochondral allograft transplantation in the knee.
        Am J Sports Med. 2012; 40: 1053-1059
        • Rotterud J.H.
        • Sivertsen E.A.
        • Forssblad M.
        • Engebretsen L.
        • Aroen A.
        Effect of meniscal and focal cartilage lesions on patient-reported outcome after anterior cruciate ligament reconstruction: a nationwide cohort study from Norway and Sweden of 8476 patients with 2-year follow-up.
        Am J Sports Med. 2013; 41: 535-543
        • Cox C.L.
        • Huston L.J.
        • Dunn W.R.
        • et al.
        Are articular cartilage lesions and meniscus tears predictive of IKDC, KOOS, and Marx activity level outcomes after anterior cruciate ligament reconstruction? A 6-year multicenter cohort study.
        Am J Sports Med. 2014; 42: 1058-1067
        • Shelbourne K.D.
        • Gray T.
        Results of anterior cruciate ligament reconstruction based on meniscus and articular cartilage status at the time of surgery. Five- to fifteen-year evaluations.
        Am J Sports Med. 2000; 28: 446-452
        • Brophy R.H.
        • Zeltser D.
        • Wright R.W.
        • Flanigan D.
        Anterior cruciate ligament reconstruction and concomitant articular cartilage injury: incidence and treatment.
        Arthroscopy. 2010; 26: 112-120
        • Gudas R.
        • Gudaite A.
        • Mickevicius T.
        • et al.
        Comparison of osteochondral autologous transplantation, microfracture, or debridement techniques in articular cartilage lesions associated with anterior cruciate ligament injury: a prospective study with a 3-year follow-up.
        Arthroscopy. 2013; 29: 89-97
        • Rotterud J.H.
        • Sivertsen E.A.
        • Forssblad M.
        • Engebretsen L.
        • Aroen A.
        Effect on patient-reported outcomes of debridement or microfracture of concomitant full-thickness cartilage lesions in anterior cruciate ligament-reconstructed knees: a nationwide cohort study from Norway and Sweden of 357 patients with 2-year follow-up.
        Am J Sports Med. 2016; 44: 337-344
        • Alfredson H.
        • Thorsen K.
        • Lorentzon R.
        Treatment of tear of the anterior cruciate ligament combined with localised deep cartilage defects in the knee with ligament reconstruction and autologous periosteum transplantation.
        Knee Surg Sports Traumatol Arthrosc. 1999; 7: 69-74
        • Amin A.A.
        • Bartlett W.
        • Gooding C.R.
        • et al.
        The use of autologous chondrocyte implantation following and combined with anterior cruciate ligament reconstruction.
        Int Orthop. 2006; 30: 48-53
        • Bobic V.
        Arthroscopic osteochondral autograft transplantation in anterior cruciate ligament reconstruction: a preliminary clinical study.
        Knee Surg Sports Traumatol Arthrosc. 1996; 3: 262-264
        • Klinger H.M.
        • Baums M.H.
        • Otte S.
        • Steckel H.
        Anterior cruciate reconstruction combined with autologous osteochondral transplantation.
        Knee Surg Sports Traumatol Arthrosc. 2003; 11: 366-371
        • Imhauser C.
        • Mauro C.
        • Choi D.
        • et al.
        Abnormal tibiofemoral contact stress and its association with altered kinematics after center-center anterior cruciate ligament reconstruction: an in vitro study.
        Am J Sports Med. 2013; 41: 815-825
        • Hoshino Y.
        • Fu F.H.
        • Irrgang J.J.
        • Tashman S.
        Can joint contact dynamics be restored by anterior cruciate ligament reconstruction?.
        Clin Orthop Relat Res. 2013; 471: 2924-2931
        • Morimoto Y.
        • Ferretti M.
        • Ekdahl M.
        • Smolinski P.
        • Fu F.H.
        Tibiofemoral joint contact area and pressure after single- and double-bundle anterior cruciate ligament reconstruction.
        Arthroscopy. 2009; 25: 62-69
        • Tajima G.
        • Iriuchishima T.
        • Ingham S.J.
        • et al.
        Anatomic double-bundle anterior cruciate ligament reconstruction restores patellofemoral contact areas and pressures more closely than nonanatomic single-bundle reconstruction.
        Arthroscopy. 2010; 26: 1302-1310
        • Van de Velde S.K.
        • Gill T.J.
        • DeFrate L.E.
        • Papannagari R.
        • Li G.
        The effect of anterior cruciate ligament deficiency and reconstruction on the patellofemoral joint.
        Am J Sports Med. 2008; 36: 1150-1159
        • Jarvela T.
        • Paakkala T.
        • Kannus P.
        • Jarvinen M.
        The incidence of patellofemoral osteoarthritis and associated findings 7 years after anterior cruciate ligament reconstruction with a bone-patellar tendon-bone autograft.
        Am J Sports Med. 2001; 29: 18-24
        • Lohmander L.S.
        • Ostenberg A.
        • Englund M.
        • Roos H.
        High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury.
        Arthritis Rheum. 2004; 50: 3145-3152
        • Kessler M.A.
        • Behrend H.
        • Henz S.
        • Stutz G.
        • Rukavina A.
        • Kuster M.S.
        Function, osteoarthritis and activity after ACL-rupture: 11 years follow-up results of conservative versus reconstructive treatment.
        Knee Surg Sports Traumatol Arthrosc. 2008; 16: 442-448
        • Li R.T.
        • Lorenz S.
        • Xu Y.
        • Harner C.D.
        • Fu F.H.
        • Irrgang J.J.
        Predictors of radiographic knee osteoarthritis after anterior cruciate ligament reconstruction.
        Am J Sports Med. 2011; 39: 2595-2603
        • McAllister D.R.
        • Joyce M.J.
        • Mann B.J.
        • Vangsness Jr., C.T.
        Allograft update: the current status of tissue regulation, procurement, processing, and sterilization.
        Am J Sports Med. 2007; 35: 2148-2158
        • McHorney C.A.
        • Ware Jr., J.E.
        • Raczek A.E.
        The MOS 36-Item Short-Form Health Survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs.
        Med Care. 1993; 31: 247-263
        • Irrgang J.J.
        • Anderson A.F.
        • Boland A.L.
        • et al.
        Development and validation of the International Knee Documentation Committee subjective knee form.
        Am J Sports Med. 2001; 29: 600-613
        • Hambly K.
        • Griva K.
        IKDC or KOOS? Which measures symptoms and disabilities most important to postoperative articular cartilage repair patients?.
        Am J Sports Med. 2008; 36: 1695-1704
        • Marx R.G.
        • Jones E.C.
        • Allen A.A.
        • et al.
        Reliability, validity, and responsiveness of four knee outcome scales for athletic patients.
        J Bone Joint Surg Am. 2001; 83: 1459-1469
        • Marx R.G.
        • Stump T.J.
        • Jones E.C.
        • Wickiewicz T.L.
        • Warren R.F.
        Development and evaluation of an activity rating scale for disorders of the knee.
        Am J Sports Med. 2001; 29: 213-218
        • Barber-Westin S.D.
        • Noyes F.R.
        • McCloskey J.W.
        Rigorous statistical reliability, validity, and responsiveness testing of the Cincinnati Knee Rating System in 350 subjects with uninjured, injured, or anterior cruciate ligament-reconstructed knees.
        Am J Sports Med. 1999; 27: 402-416
        • Steadman J.R.
        • Miller B.S.
        • Karas S.G.
        • Schlegel T.F.
        • Briggs K.K.
        • Hawkins R.J.
        The microfracture technique in the treatment of full-thickness chondral lesions of the knee in National Football League players.
        J Knee Surg. 2003; 16: 83-86
        • Steadman J.R.
        • Briggs K.K.
        • Rodrigo J.J.
        • Kocher M.S.
        • Gill T.J.
        • Rodkey W.G.
        Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up.
        Arthroscopy. 2003; 19: 477-484
        • Krych A.J.
        • Harnly H.W.
        • Rodeo S.A.
        • Williams 3rd, R.J.
        Activity levels are higher after osteochondral autograft transfer mosaicplasty than after microfracture for articular cartilage defects of the knee: a retrospective comparative study.
        J Bone Joint Surg Am. 2012; 94: 971-978
        • Greco N.J.
        • Anderson A.F.
        • Mann B.J.
        • et al.
        Responsiveness of the International Knee Documentation Committee Subjective Knee Form in comparison to the Western Ontario and McMaster Universities Osteoarthritis Index, modified Cincinnati Knee Rating System, and Short Form 36 in patients with focal articular cartilage defects.
        Am J Sports Med. 2010; 38: 891-902
        • Williams V.J.
        • Piva S.R.
        • Irrgang J.J.
        • Crossley C.
        • Fitzgerald G.K.
        Comparison of reliability and responsiveness of patient-reported clinical outcome measures in knee osteoarthritis rehabilitation.
        J Orthop Sports Phys Ther. 2012; 42: 716-723
        • Gaweda K.
        • Walawski J.
        • Weglowski R.
        • Drelich M.
        • Mazurkiewicz T.
        Early results of one-stage knee extensor realignment and autologous osteochondral grafting.
        Int Orthop. 2006; 30: 39-42
        • Cameron J.I.
        • McCauley J.C.
        • Kermanshahi A.Y.
        • Bugbee W.D.
        Lateral opening-wedge distal femoral osteotomy: pain relief, functional improvement, and survivorship at 5 years.
        Clin Orthop Relat Res. 2015; 473: 2009-2015
        • Getgood A.
        • Gelber J.
        • Gortz S.
        • De Young A.
        • Bugbee W.
        Combined osteochondral allograft and meniscal allograft transplantation: a survivorship analysis.
        Knee Surg Sports Traumatol Arthrosc. 2015; 23: 946-953
        • Drexler M.
        • Gross A.
        • Dwyer T.
        • et al.
        Distal femoral varus osteotomy combined with tibial plateau fresh osteochondral allograft for post-traumatic osteoarthritis of the knee.
        Knee Surg Sports Traumatol Arthrosc. 2015; 23: 1317-1323
        • LaPrade R.F.
        • Botker J.
        • Herzog M.
        • Agel J.
        Refrigerated osteoarticular allografts to treat articular cartilage defects of the femoral condyles. A prospective outcomes study.
        J Bone Joint Surg Am. 2009; 91: 805-811
        • De Caro F.
        • Bisicchia S.
        • Amendola A.
        • Ding L.
        Large fresh osteochondral allografts of the knee: a systematic clinical and basic science review of the literature.
        Arthroscopy. 2015; 31: 757-765
        • Cook J.L.
        • Stannard J.P.
        • Stoker A.M.
        • et al.
        Importance of donor chondrocyte viability for osteochondral allografts.
        Am J Sports Med. 2016; 44: 1260-1268
        • Ding L.
        • Zampogna B.
        • Vasta S.
        • et al.
        Why do osteochondral allografts survive? Comparative analysis of cartilage biochemical properties unveils a molecular basis for durability.
        Am J Sports Med. 2015; 43: 2459-2468
        • Murphy R.T.
        • Pennock A.T.
        • Bugbee W.D.
        Osteochondral allograft transplantation of the knee in the pediatric and adolescent population.
        Am J Sports Med. 2014; 42: 635-640
        • Raz G.
        • Safir O.A.
        • Backstein D.J.
        • Lee P.T.
        • Gross A.E.
        Distal femoral fresh osteochondral allografts: follow-up at a mean of twenty-two years.
        J Bone Joint Surg Am. 2014; 96: 1101-1107