Advertisement

Accessibility of the Talar Dome—Anatomic Comparison of Plantarflexion Versus Noninvasive Distraction in Arthroscopy

Published:October 24, 2017DOI:https://doi.org/10.1016/j.arthro.2017.07.036

      Purpose

      The purpose of this study was to evaluate the difference in accessibility of the talar dome during ankle arthroscopy between noninvasive distraction and maximum plantar flexion without distraction.

      Methods

      For this study, 20 matched pairs (n = 40) of anatomic ankle specimens were used. Two groups (distraction or maximum plantar flexion) were defined. Through the use of chondral picks, the accessibility of each technique was tested arthroscopically. Afterward, the ankle joint was dissected and the reach achieved was measured and compared between the 2 groups.

      Results

      Through noninvasive distraction, 13.1 ± 4.4 mm of the talar dome was reached laterally and 16.7 ± 3.7 mm medially. Through plantar flexion, 18.1 ± 3.4 mm of the talar dome was reached laterally and 18.1 ± 3.4 mm medially. Statistical comparison revealed a significantly better reach in plantar flexion on the lateral side of the talar dome (P = .007). There was no significant difference medially.

      Conclusions

      Plantar flexion significantly improves reachability of the dome on the lateral side and it is equal to noninvasive distraction medially. Results of this study may allow for better access to the lesion of the talus.

      Clinical Relevance

      Results of this study allow for a better planning of interventions in OCD of the talus.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Berndt A.L.
        • Harty M.
        Transchondral fractures (osteochondritis dissecans) of the talus.
        J Bone Joint Surg Am. 1959; 41: 988-1020
        • Glazebrook M.A.
        • Ganapathy V.
        • Bridge M.A.
        • Stone J.W.
        • Allard J.P.
        Evidence-based indications for ankle arthroscopy.
        Arthroscopy. 2009; 25: 1478-1490
        • Kono M.
        • Takao M.
        • Naito K.
        • Uchio Y.
        • Ochi M.
        Retrograde drilling for osteochondral lesions of the talar dome.
        Am J Sports Med. 2006; 34: 1450-1456
        • Elias I.
        • Zoga A.C.
        • Morrison W.B.
        • Besser M.P.
        • Schweitzer M.E.
        • Raikin S.M.
        Osteochondral lesions of the talus: Localization and morphologic data from 424 patients using a novel anatomical grid scheme.
        Foot Ankle Int. 2007; 28: 154-161
        • Zengerink M.
        • Struijs P.A.
        • Tol J.L.
        • van Dijk C.N.
        Treatment of osteochondral lesions of the talus: A systematic review.
        Knee Surg Sports Traumatol Arthrosc. 2010; 18: 238-246
        • van Dijk C.N.
        • van Bergen C.J.
        Advancements in ankle arthroscopy.
        J Am Acad Orthop Surg. 2008; 16: 635-646
        • van Bergen C.J.
        • Kox L.S.
        • Maas M.
        • Sierevelt I.N.
        • Kerkhoffs G.M.
        • van Dijk C.N.
        Arthroscopic treatment of osteochondral defects of the talus: Outcomes at eight to twenty years of follow-up.
        J Bone Joint Surg Am. 2013; 95: 519-525
        • Hannon C.P.
        • Smyth N.A.
        • Murawski C.D.
        • et al.
        Osteochondral lesions of the talus: Aspects of current management.
        J Bone Joint. 2014; 96: 164-171
        • van Bergen C.J.
        • Tuijthof G.J.
        • Blankevoort L.
        • Maas M.
        • Kerkhoffs G.M.
        • van Dijk C.N.
        Computed tomography of the ankle in full plantar flexion: A reliable method for preoperative planning of arthroscopic access to osteochondral defects of the talus.
        Arthroscopy. 2012; 28: 985-992
        • Van Dijk C.N.
        • Verhagen R.A.
        • Tol H.J.
        Technical note: Resterilizable noninvasive ankle distraction device.
        Arthroscopy. 2001; 17: E12
        • Dowdy P.A.
        • Watson B.V.
        • Amendola A.
        • Brown J.D.
        Noninvasive ankle distraction: Relationship between force, magnitude of distraction, and nerve conduction abnormalities.
        Arthroscopy. 1996; 12: 64-69
        • Golano P.
        • Vega J.
        • Perez-Carro L.
        • Gotzens V.
        Ankle anatomy for the arthroscopist. Part II: Role of the ankle ligaments in soft tissue impingement.
        Foot Ankle Clin. 2006; 11 (v-vi): 275-296
        • Golano P.
        • Vega J.
        • Perez-Carro L.
        • Gotzens V.
        Ankle anatomy for the arthroscopist. Part I: The portals.
        Foot Ankle Clin. 2006; 11 (v): 253-273
        • Guhl J.F.
        New concepts (distraction) in ankle arthroscopy.
        Arthroscopy. 1988; 4: 160-167
        • Lozano-Calderon S.A.
        • Samocha Y.
        • McWilliam J.
        Comparative performance of ankle arthroscopy with and without traction.
        Foot Ankle Int. 2012; 33: 740-745
        • Unangst A.
        • Martin K.D.
        Simple 1-step ankle arthroscopy distraction.
        Arthrosc Tech. 2015; 4: e873-e876
        • van Dijk C.N.
        • Scholte D.
        Arthroscopy of the ankle joint.
        Arthroscopy. 1997; 13: 90-96
        • van Bergen C.J.
        • Tuijthof G.J.
        • Maas M.
        • Sierevelt I.N.
        • van Dijk C.N.
        Arthroscopic accessibility of the talus quantified by computed tomography simulation.
        Am J Sports Med. 2012; 40: 2318-2324
        • van Bergen C.J.
        • Gerards R.M.
        • Opdam K.T.
        • Terra M.P.
        • Kerkhoffs G.M.
        Diagnosing, planning and evaluating osteochondral ankle defects with imaging modalities.
        World J Orthop. 2015; 6: 944-953
        • Gasparetto F.
        • Collo G.
        • Pisanu G.
        • et al.
        Posterior ankle and subtalar arthroscopy: Indications, technique, and results.
        Curr Rev Musculoskelet Med. 2012; 5: 164-170
        • Lee K.B.
        • Saltzman C.L.
        • Suh J.S.
        • Wasserman L.
        • Amendola A.
        A posterior 3-portal arthroscopic approach for isolated subtalar arthrodesis.
        Arthroscopy. 2008; 24: 1306-1310
        • Nickisch F.
        • Barg A.
        • Saltzman C.L.
        • et al.
        Postoperative complications of posterior ankle and hindfoot arthroscopy.
        J Bone Joint Surg Am. 2012; 94: 439-446
        • Smyth N.A.
        • Zwiers R.
        • Wiegerinck J.I.
        • et al.
        Posterior hindfoot arthroscopy: A review.
        Am J Sports Med. 2014; 42: 225-234
        • Urguden M.
        • Cevikol C.
        • Dabak T.K.
        • Karaali K.
        • Aydin A.T.
        • Apaydin A.
        Effect of joint motion on safety of portals in posterior ankle arthroscopy.
        Arthroscopy. 2009; 25: 1442-1446
        • Balci H.I.
        • Polat G.
        • Dikmen G.
        • Atalar A.
        • Kapicioglu M.
        • Asik M.
        Safety of posterior ankle arthroscopy portals in different ankle positions: A cadaveric study.
        Knee Surg Sports Traumatol Arthrosc. 2016; 24: 2119-2123
        • Heck J.
        • Mendicino R.W.
        • Stasko P.
        • Shadrick D.
        • Catanzariti A.R.
        An anatomic safe zone for posterior ankle arthroscopy: A cadaver study.
        J Foot Ankle Surg. 2012; 51: 753-756
        • Sitler D.F.
        • Amendola A.
        • Bailey C.S.
        • Thain L.M.
        • Spouge A.
        Posterior ankle arthroscopy: An anatomic study.
        J Bone Joint Surg Am. 2002; 84: 763-769
        • Amendola A.
        • Lee K.B.
        • Saltzman C.L.
        • Suh J.S.
        Technique and early experience with posterior arthroscopic subtalar arthrodesis.
        Foot Ankle Int. 2007; 28: 298-302
        • Galla M.
        • Lobenhoffer P.
        Technique and results of arthroscopic treatment of posterior ankle impingement.
        Foot Ankle Surg. 2011; 17: 79-84
        • Feller R.
        • Borenstein T.
        • Fantry A.J.
        • et al.
        Arthroscopic quantification of syndesmotic instability in a cadaveric model.
        Arthroscopy. 2017; 33: 436-444
        • Malekpour L.
        • Rahali S.
        • Duparc F.
        • Dujardin F.
        • Roussignol X.
        Anatomic feasibility study of posterior arthroscopic tibiotalar arthrodesis.
        Foot Ankle Int. 2015; 36: 1229-1234
        • Watson B.C.
        • Lucas D.E.
        • Simpson G.A.
        • Berlet G.C.
        • Hyer C.F.
        Arthroscopic evaluation of syndesmotic instability in a cadaveric model.
        Foot Ankle Int. 2015; 36: 1362-1368
        • Magerkurth O.
        • Knupp M.
        • Ledermann H.
        • Hintermann B.
        Evaluation of hindfoot dimensions: A radiological study.
        Foot Ankle Int. 2006; 27: 612-616
        • van Bergen C.J.
        • de Leeuw P.A.
        • van Dijk C.N.
        Treatment of osteochondral defects of the talus.
        Rev Chir Orthop Reparatrice Appar Mot. 2008; 94: 398-408
        • Navid D.O.
        • Myerson M.S.
        Approach alternatives for treatment of osteochondral lesions of the talus.
        Foot Ankle Clin. 2002; 7: 635-649
        • Barg A.
        • Saltzman C.L.
        • Beals T.C.
        • Bachus K.N.
        • Blankenhorn B.D.
        • Nickisch F.
        Arthroscopic talar dome access using a standard versus wire-based traction method for ankle joint distraction.
        Arthroscopy. 2016; 32: 1367-1374
        • de Leeuw P.A.
        • Golano P.
        • Clavero J.A.
        • van Dijk C.N.
        Anterior ankle arthroscopy, distraction or dorsiflexion?.
        Knee Surg Sports Traumatol Arthrosc. 2010; 18: 594-600
        • Loomer R.
        • Fisher C.
        • Lloyd-Smith R.
        • Sisler J.
        • Cooney T.
        Osteochondral lesions of the talus.
        Am J Sports Med. 1993; 21: 13-19
        • Ramponi L.
        • Yasui Y.
        • Murawski C.D.
        • et al.
        Lesion size is a predictor of clinical outcomes after bone marrow stimulation for osteochondral lesions of the talus: A systematic review.
        Am J Sports Med. 2017; 45: 1698-1705
        • Grambart S.T.
        Arthroscopic management of osteochondral lesions of the talus.
        Clin Podiatr Med Surg. 2016; 33: 521-530
        • Yoshimura I.
        • Kanazawa K.
        • Hagio T.
        • Minokawa S.
        • Asano K.
        • Naito M.
        The relationship between the lesion-to-ankle articular length ratio and clinical outcomes after bone marrow stimulation for small osteochondral lesions of the talus.
        J Orthop Sci. 2015; 20: 507-512
        • Ralis Z.A.
        Freezing of orthopaedic specimens before mechanical testing.
        J Bone Joint Surg Br. 1989; 71: 55-57