Incidence of Anterolateral Ligament Tears in the Anterior Cruciate Ligament-Deficient Knee: A Magnetic Resonance Imaging Analysis


      The purpose of this study is to determine the incidence of anterolateral ligament (ALL) tears on magnetic resonance imaging (MRI) in patients diagnosed with anterior cruciate ligament (ACL) tears. Furthermore, this study sought to determine the inter- and intraobserver reliability in diagnosing an ALL tear.


      The MRI radiologic database at a community military hospital was queried for ACL tears over the period of January 2011 to April 2015. During this time, 181 MRIs were identified as having ACL tears. The MRIs were then independently reviewed by an orthopaedic surgeon and a musculoskeletal (MSK) trained radiologist. Both reviewers, independently confirmed the ACL tears, and the ALL was noted to be either torn, intact, or not visualized on axial, sagittal, and coronal images. Four weeks later the same MRIs were then reviewed for the presence and location of an ALL tear to determine inter- and intraobserver reliability.


      The MSK radiologist found ALL tears on MRI in 28.2% of the cases, while the orthopaedic surgeon found ALL tears in 39.8% of the cases; 5.5% of the MRIs were characterized as having a nonvisualized ALL. The interobserver reliability was noted to have a kappa value of 0.333. The intraobserver reliability of the MSK radiologist and orthopaedic surgeon demonstrated a kappa value of 0.654 and 0.251, respectively.


      This study shows that the majority of patients with a known ACL tear on MRI do not have a tear of the ALL. Additionally, the interobserver reliability of surgeons and radiologist is fair. In this study, the MSK radiologist had higher intraobserver reliability when looking for an ALL tear.

      Level of Evidence

      Level IV, case control study.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Segond P.
        Recherches cliniques et expérimentales sur les épanchements sanguins du genou par entorse.
        Progres Med. 1897; 7: 297-341
        • Claes S.
        • Vereecke E.
        • Maes M.
        • Victor J.
        • Verdonk P.
        • Bellemans J.
        Anatomy of the anterolateral ligament of the knee.
        J Anat. 2013; 223: 321-328
        • Daggett M.
        • Ockuly A.C.
        • Cullen M.
        • et al.
        Femoral origin of the anterolateral ligament: an anatomic analysis.
        Arthroscopy. 2016; 32: 835-841
        • Stijak L.
        • Bumbasirevic M.
        • Radonjic V.
        • et al.
        Anatomic description of the anterolateral ligament of the knee.
        Knee Surg Sports Traumatol Arthrosc. 2016; 24: 2083-2088
        • Helito C.P.
        • Helito P.V.
        • Costa H.P.
        • et al.
        MRI evaluation of the anterolateral ligament of the knee: assessment in routine 1.5-T scans.
        Skeletal Radiol. 2014; 43: 1421-1427
        • Claes S.
        • Luyckx T.
        • Vereecke E.
        • Bellemans J.
        The Segond fracture: a bony injury of the anterolateral ligament of the knee.
        Arthroscopy. 2014; 30: 1475-1482
        • De Maria M.
        • Barbiera F.
        • Lo Casto A.
        • et al.
        Biomechanical correlations of lesions associated with traumatic diseases of the anterior cruciate ligament. Analysis with magnetic resonance.
        Radiol Med. 1996; 91: 693-699
        • Helito C.P.
        • Demange M.K.
        • Bonadio M.B.
        • et al.
        Anatomy and histology of the knee anterolateral ligament.
        Orthop J Sports Med. 2013; 1 (2325967113513546)
        • Thein R.
        • Boorman-Padgett J.
        • Stone K.
        • Wickiewicz T.L.
        • Imhauser C.W.
        • Pearle A.D.
        Biomechanical assessment of the anterolateral ligament of the knee: a secondary restraint in simulated tests of the pivot shift and of anterior stability.
        J Bone Joint Surg Am. 2016; 98: 937-943
        • Sonnery-Cottet B.
        • Thaunat M.
        • Freychet B.
        • Pupim B.H.
        • Murphy C.G.
        • Claes S.
        Outcome of a combined anterior cruciate ligament and anterolateral ligament reconstruction technique with a minimum 2-year follow-up.
        Am J Sports Med. 2015; 43: 1598-1605
        • Lee J.K.
        • Yao L.
        • Phelps C.T.
        • Wirth C.R.
        • Czajka J.
        • Lozman J.
        Anterior cruciate ligament tears: MR imaging compared with arthroscopy and clinical tests.
        Radiology. 1988; 166: 861-864
        • Mink J.H.
        • Levy T.
        • Crues 3rd, J.V.
        Tears of the anterior cruciate ligament and menisci of the knee: MR imaging evaluation.
        Radiology. 1988; 167: 769-774
        • Campos J.C.
        • Chung C.B.
        • Lektrakul N.
        • et al.
        Pathogenesis of the Segond fracture: anatomic and MR imaging evidence of an iliotibial tract or anterior oblique band avulsion.
        Radiology. 2001; 219: 381-386
        • Dodds A.L.
        • Halewood C.
        • Gupte C.M.
        • Williams A.
        • Amis A.A.
        The anterolateral ligament: anatomy, length changes and association with the Segond fracture.
        J Bone Joint Br. 2014; 96: 325-331
        • Fulkerson J.P.
        • Gossling H.R.
        Anatomy of the knee joint lateral retinaculum.
        Clin Orthop Relat Res. 1980; 153: 183-188
        • Kennedy M.I.
        • Claes S.
        • Fuso F.A.
        • et al.
        The anterolateral ligament: an anatomic, radiographic, and biomechanical analysis.
        Am J Sports Med. 2015; 43: 1606-1615
        • Terry G.C.
        • Hughston J.C.
        • Norwood L.A.
        The anatomy of the iliopatellar band and iliotibial tract.
        Am J Sports Med. 1986; 14: 39-45
        • Van der Watt L.
        • Khan M.
        • Rothrauff B.B.
        • et al.
        The structure and function of the anterolateral ligament of the knee: a systematic review.
        Arthroscopy. 2015; 31: 569-582.e3
        • Vieira E.L.
        • Vieira E.A.
        • da Silva R.T.
        • Berlfein P.A.
        • Abdalla R.J.
        • Cohen M.
        An anatomic study of the iliotibial tract.
        Arthroscopy. 2007; 23: 269-274
        • Vincent J.P.
        • Magnussen R.A.
        • Gezmez F.
        • et al.
        The anterolateral ligament of the human knee: an anatomic and histologic study.
        Knee Surg Sports Traumatol Arthrosc. 2012; 20: 147-152
        • Landis J.R.
        • Koch G.G.
        The measurement of observer agreement for categorical data.
        Biometrics. 1977; 33: 159-174
        • Nitri M.
        • Rasmussen M.T.
        • Williams B.T.
        • et al.
        An in vitro robotic assessment of the anterolateral ligament. Part 2. Anterolateral ligament reconstruction combined with anterior cruciate ligament reconstruction.
        Am J Sports Med. 2016; 44: 593-601
        • Rasmussen M.T.
        • Nitri M.
        • Williams B.T.
        • et al.
        An in vitro robotic assessment of the anterolateral ligament. Part 1. Secondary role of the anterolateral ligament in the setting of an anterior cruciate ligament injury.
        Am J Sports Med. 2016; 44: 585-592
        • Hartigan D.E.
        • Carroll K.W.
        • Kosarek F.J.
        • Piasecki D.P.
        • Fleischli J.F.
        • D'Alessandro D.F.
        Visibility of anterolateral ligament tears in anterior cruciate ligament-deficient knees with standard 1.5-Tesla magnetic resonance imaging.
        Arthroscopy. 2016; 32: 2061-2065
        • Homsi R.
        • Gieseke J.
        • Luetkens J.A.
        • et al.
        Three-dimensional isotropic fat-suppressed proton density-weighted MRI at 3 Tesla using a T/R-coil can replace multiple plane two-dimensional sequences in knee imaging.
        Rofo. 2016; 188: 949-956
        • Helito C.P.
        • Helito P.V.
        • Costa H.P.
        • Demange M.K.
        • Bordalo-Rodrigues M.
        Assessment of the anterolateral ligament of the knee by magnetic resonance imaging in acute injuries of the anterior cruciate ligament.
        Arthroscopy. 2017; 33: 140-146
        • Daggett M.
        • Helito C.
        • Cullen M.
        • et al.
        The anterolateral ligament: an anatomic study on sex-based differences.
        Orthop J Sports Med. 2017; 5 (232596711668938)
        • Porrino J.
        • Maloney E.
        • Richardson M.
        • Mulcahy H.
        • Ha A.
        • Chew F.S.
        The anterolateral ligament of the knee: MRI appearance, association with the Segond fracture, and historical perspective.
        AJR Am J Roentgenol. 2015; 204: 367-373
        • Cavaignac E.
        • Faruch M.
        • Wytrykowski K.
        • et al.
        Ultrasonographic evaluation of anterolateral ligament injuries: correlation with MRI and pivot shift testing.
        Arthroscopy. 2017; 33: 1384-1390
        • Kittl C.
        • El-Daou H.
        • Athwal K.K.
        • et al.
        The role of the anterolateral structures and the ACL in controlling laxity of the intact and ACL-deficient knee.
        Am J Sports Med. 2016; 44: 345-354
        • Sonnery-Cottet B.
        • Lutz C.
        • Daggett M.
        • et al.
        The involvement of the anterolateral ligament in rotational control of the knee.
        Am J Sports Med. 2016; 44: 1209-1214

      Linked Article