Advertisement

Midterm Outcomes of Arthroscopic Reduction and Internal Fixation of Anterior Cruciate Ligament Tibial Eminence Avulsion Fractures With K-Wire Fixation

      Purpose

      To determine the clinical and radiological outcomes of patients who underwent arthroscopic reduction and internal fixation of a tibial eminence avulsion fracture with Kirshner wires (K-wires) at a mean of 8 years following surgery.

      Methods

      This was a retrospective study with prospectively collected data. Inclusion criteria consisted of patients who underwent arthroscopic reduction and internal fixation of tibial eminence fracture with K-wires between 1989 and 2015 at a minimum of 18 months follow-up. Assessment included the International Knee Documentation Committee Ligament Evaluation, Lysholm Knee Score, and clinical outcomes. Magnetic resonance imaging (MRI) was performed to evaluate the anterior cruciate ligament (ACL) and evidence of osteoarthritis.

      Results

      A total of 48 participants met the inclusion criteria, and 32 were reviewed at a mean of 8 years (range, 18-260 months) after surgery. The mean age at the time of surgery was 24.5 years (10-55 years). Subsequent ACL injury occurred in 5 participants (10.4%) on the index knee and in 1 participant also on the contralateral knee; 86% had a normal examination, and no patients had >5-mm side-to-side difference on instrumented testing. The mean International Knee Documentation Committee subjective score at 8 years was 86 (range, 40-100). On MRI scan assessment for osteoarthritic changes at final follow-up, 82% of participants had no evidence of chondral wear on the medial compartment and 73% had no changes in the lateral compartment according to Magnetic Resonance Image Osteoarthritis Knee Score classification. On MRI scan qualitative assessment of ACL and tibial eminence, 7 participants (32%) were found to have high signal at the fracture site. The mean medial tibial eminence height was 9.2 mm (range, 6.3 mm to 1.31 cm) and the lateral tibial eminence height was an average of 6.7 mm (range, 0.38-0.97 mm). Significant kneeling pain was reported by 8 participants (25%).

      Conclusions

      This study indicates that internal fixation with K-wires is an acceptable approach to reduce tibial eminence avulsion fractures, providing excellent clinical and radiological outcomes at a minimum of 18 months of follow-up.

      Level of Evidence

      Level IV, therapeutic case series.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Adams A.
        • Talathi N.
        • Gandhi J.
        • Patel N.
        Tibial spine fractures in children: Evaluation, management, and future directions.
        J Knee Surg. 2017; 31: 374-381
        • van der List J.
        • Mintz D.
        • DiFelice G.
        The location of anterior cruciate ligament tears: A prevalence study using magnetic resonance imaging.
        Orthop J Sports Med. 2017; 5 (2325967117709966)
        • Hargrove R.
        • Parsons S.
        • Payne R.
        Anterior tibial spine fracture—an easy fracture to miss.
        Accident Emerg Nurs. 2004; 12: 173-175
        • Delcogliano A.
        • Chiossi S.
        • Caporaso A.
        • Menghi A.
        • Rinonapoli G.
        Tibial intercondylar eminence fractures in adults: Arthroscopic treatment.
        Knee Surg Sports Traumatol Arthrosc. 2003; 11: 255-259
        • Kavalci C.
        • Dagdeviren N.
        • Durukan P.
        • Çevik Y.
        Tibial intercondylar eminence fractures in adults.
        Intern Emerg Med. 2010; 5: 71-73
        • Green D.P.
        Rockwood and Green's fractures in adults.
        Lippincott Williams & Wilkins, 2010
        • Meyers M.H.
        • McKeever F.M.
        Fracture of the intercondylar eminence of the tibia.
        J Bone Joint Surg Am. 1959; 41: 209-222
        • Kocher M.S.
        • Foreman E.S.
        • Micheli L.J.
        Laxity and functional outcome after arthroscopic reduction and internal fixation of displaced tibial spine fractures in children.
        Arthroscopy. 2003; 19: 1085-1090
        • Reynders P.
        • Reynders K.
        • Broos P.
        Pediatric and adolescent tibial eminence fractures: Arthroscopic cannulated screw fixation.
        J Trauma Acute Care Surg. 2002; 53: 49-54
        • May J.H.
        • Levy B.A.
        • Guse D.
        • Shah J.
        • Stuart M.J.
        • Dahm D.L.
        ACL tibial spine avulsion: Mid-term outcomes and rehabilitation.
        Orthopedics. 2011; 34: 89
        • Pan R.-Y.
        • Yang J.-J.
        • Chang J.-H.
        • Shen H.-C.
        • Lin L.-C.
        • Lian Y.-T.
        Clinical outcome of arthroscopic fixation of anterior tibial eminence avulsion fractures in skeletally mature patients: A comparison of suture and screw fixation technique.
        J Trauma Acute Care Surg. 2012; 72: E88-E93
        • Faivre B.
        • Benea H.
        • Klouche S.
        • Lespagnol F.
        • Bauer T.
        • Hardy P.
        An original arthroscopic fixation of adult's tibial eminence fractures using the Tightrope® device: A report of 8 cases and review of literature.
        Knee. 2014; 21: 833-839
        • Keshet D.
        • Zaidman M.
        • Eidelman M.
        Treatment of avulsion fractures of the intercondylar eminence by medial parapatellar approach, open reduction and cross wire fixation.
        J Pediatr Orthop B. 2015; 24: 321-325
        • Bonin N.
        • Jeunet L.
        • Obert L.
        • Dejour D.
        Adult tibial eminence fracture fixation: Arthroscopic procedure using K-wire folded fixation.
        Knee Surg Sports Traumatol Arthrosc. 2007; 15: 857-862
        • Tudisco C.
        • Giovarruscio R.
        • Febo A.
        • Savarese E.
        • Bisicchia S.
        Intercondylar eminence avulsion fracture in children: Long-term follow-up of 14 cases at the end of skeletal growth.
        J Pediatr Orthop B. 2010; 19: 403-408
        • Wagih A.M.
        Arthroscopic treatment of avulsed tibial spine fractures using a transosseous sutures technique.
        Acta Orthop Belg. 2015; 81: 141-146
        • Memisoglu K.
        • Muezzinoglu U.S.
        • Atmaca H.
        • Sarman H.
        • Kesemenli C.C.
        Arthroscopic fixation with intra-articular button for tibial intercondylar eminence fractures in skeletally immature patients.
        J Pediatr Orthop B. 2016; 25: 31-36
        • Verdano M.A.
        • Pellegrini A.
        • Lunini E.
        • Tonino P.
        • Ceccarelli F.
        Arthroscopic absorbable suture fixation for tibial spine fractures.
        Arthrosct Tech. 2014; 3: e45-e48
        • Matthews D.E.
        • Geissler W.B.
        Arthroscopic suture fixation of displaced tibial eminence fractures.
        Arthroscopy. 1994; 10: 418-423
        • Wiley J.
        • Baxter M.
        Tibial spine fractures in children.
        Clin Orthop Rel Res. 1990; : 54-60
        • Ochiai S.
        • Hagino T.
        • Watanabe Y.
        • et al.
        One strategy for arthroscopic suture fixation of tibial intercondylar eminence fractures using the Meniscal Viper Repair System.
        Sports Med Arthrosc Rehabil Ther Technol. 2011; 3
        • Wiegand N.
        • Naumov I.
        • Vámhidy L.
        • Nöt L.
        Arthroscopic treatment of tibial spine fracture in children with a cannulated Herbert screw.
        Knee. 2014; 21: 481-485
        • Lohmander L.S.
        • Englund P.M.
        • Dahl L.L.
        • Roos E.M.
        The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis.
        Am J Sports Med. 2007; 35: 1756-1769
        • Sommerfeldt D.W.
        Arthroscopically assisted internal fixation of avulsion fractures of the anterior cruciate ligament during childhood and adolescence.
        Oper Orthop Traumatol. 2008; 20: 310-320
        • Shelbourne K.D.
        • Nitz P.
        Accelerated rehabilitation after anterior cruciate ligament reconstruction.
        Am J Sports Med. 1990; 18: 292-299
        • Kulczycka P.
        • Larbi A.
        • Malghem J.
        • Thienpont E.
        • Vande Berg B.
        • Lecouvet F.
        Imaging ACL reconstructions and their complications.
        Diagn Interv Imaging. 2015; 96: 11-19
        • Frank R.M.
        • Seroyer S.T.
        • Lewis P.B.
        • Bach B.R.
        • Verma N.N.
        MRI analysis of tibial position of the anterior cruciate ligament.
        Knee Surg Sports Traumatol Arthrosc. 2010; 18: 1607-1611
        • Sturnick D.R.
        • Argentieri E.C.
        • Vacek P.M.
        • et al.
        A decreased volume of the medial tibial spine is associated with an increased risk of suffering an anterior cruciate ligament injury for males but not females.
        J Orthop Res. 2014; 32: 1451-1457
        • Hunter D.J.
        • Guermazi A.
        • Lo G.H.
        • et al.
        Evolution of semiquantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score).
        Osteoarthritis Cartilage. 2011; 19: 990-1002
        • Wiggins A.J.
        • Grandhi R.K.
        • Schneider D.K.
        • Stanfield D.
        • Webster K.E.
        • Myer G.D.
        Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: A systematic review and meta-analysis.
        Am J Sports Med. 2016; 44: 1861-1876
        • Salmon L.
        • Russell V.
        • Musgrove T.
        • Pinczewski L.
        • Refshauge K.
        Incidence and risk factors for graft rupture and contralateral rupture after anterior cruciate ligament reconstruction.
        Arthroscopy. 2005; 21: 948-957
        • Bourke H.
        • Salmon L.J.
        • Waller A.
        • Patterson V.
        • Pinczewski L.A.
        The survival of the anterior cruciate ligament graft and the contralateral ACL at a minimum of 15 years.
        Am J Sports Med. 2012; 40: 1985-1992
        • Morgan M.D.
        • Salmon L.J.
        • Waller A.
        • Roe J.P.
        • Pinczewski L.A.
        Fifteen-year survival of endoscopic anterior cruciate ligament reconstruction in patients aged 18 years and younger.
        Am J Sports Med. 2016; 44: 384-392
        • Tjoumakaris F.P.
        • Donegan D.J.
        • Sekiya J.K.
        Partial tears of the anterior cruciate ligament: Diagnosis and treatment.
        Am J Orthop (Belle Mead NJ). 2011; 40: 92-97
        • Kocher M.S.
        • Micheli L.J.
        • Gerbino P.
        • Hresko M.T.
        Tibial eminence fractures in children: Prevalence of meniscal entrapment.
        Am J Sports Med. 2003; 31: 404-407
        • Perugia D.
        • Basiglini L.
        • Vadala A.
        • Ferretti A.
        Clinical and radiological results of arthroscopically treated tibial spine fractures in childhood.
        Int Orthop. 2009; 33: 243-248
        • Berg E.E.
        Comminuted tibial eminence anterior cruciate ligament avulsion fractures: Failure of arthroscopic treatment.
        Arthroscopy. 1993; 9: 446-450
        • Edmonds E.W.
        • Fornari E.D.
        • Dashe J.
        • Roocroft J.H.
        • King M.M.
        • Pennock A.T.
        Results of displaced pediatric tibial spine fractures: A comparison between open, arthroscopic, and closed management.
        J Pediatr Orthop. 2015; 35: 651-656
        • Bogunovic L.
        • Tarabichi M.
        • Harris D.
        • Wright R.
        Treatment of tibial eminence fractures: A systematic review.
        J Knee Surg. 2015; 28: 255-262
        • Osti L.
        • Merlo F.
        • Liu H.
        • Bocchi L.
        A simple modified arthroscopic procedure for fixation of displaced tibial eminence fractures.
        Arthroscopy. 2000; 16: 379-382
        • Lee S.
        • Kim H.
        • Jang J.
        • Seong S.C.
        • Lee M.C.
        Intraoperative correlation analysis between tunnel position and translational and rotational stability in single-and double-bundle anterior cruciate ligament reconstruction.
        Arthroscopy. 2012; 28: 1424-1436
        • Janarv P.-M.
        • Westblad P.
        • Johansson C.
        • Hirsch G.
        Long-term follow-up of anterior tibial spine fractures in children.
        J Pediatr Orthop. 1995; 15: 63-68
        • Riccardo C.
        • Fabio C.
        • Pietro R.
        Knee osteoarthritis after reconstruction of isolated anterior cruciate ligament injuries: A systematic literature review.
        Joints. 2017; 5: 39
        • van Meer B.L.
        • Meuffels D.E.
        • van Eijsden W.A.
        • Verhaar J.A.
        • Bierma-Zeinstra S.M.
        • Reijman M.
        Which determinants predict tibiofemoral and patellofemoral osteoarthritis after anterior cruciate ligament injury? A systematic review.
        Br J Sports Med. 2015; 49 (bjsports-2013-093258): 975-983
        • Pinczewski L.
        • Deehan D.
        • Salmon L.
        • Russell V.
        • Clingeleffer A.
        A five-year comparison of patellar tendon versus four-strand hamstring tendon autograft for arthroscopic reconstruction of the anterior cruciate ligament.
        Am J Sports Med. 2002; 30: 523-536