Advertisement

The Role of Fibers Within the Tibial Attachment of the Anterior Cruciate Ligament in Restraining Tibial Displacement

      Purpose

      To evaluate the load-bearing functions of the fibers of the anterior cruciate ligament (ACL) tibial attachment in restraining tibial anterior translation, internal rotation, and combined anterior and internal rotation laxities in a simulated pivot-shift test.

      Methods

      Twelve knees were tested using a robot. Laxities tested were: anterior tibial translation (ATT), internal rotation (IR), and coupled translations and rotations during a simulated pivot-shift. The kinematics of the intact knee was replayed after sequentially transecting 9 segments of the ACL attachment and fibers entering the lateral gutter, measuring their contributions to restraining laxity. The center of effort (COE) of the ACL force transmitted to the tibia was calculated. A blinded anatomic analysis identified the densest fiber area in the attachment of the ACL and thus its centroid (center of area). This centroid was compared with the biomechanical COE.

      Results

      The anteromedial tibial fibers were the primary restraint of ATT (84% across 0° to 90° flexion) and IR (61%) during isolated and coupled displacements, except for the pivot-shift and ATT in extension. The lateral gutter resisted 28% of IR at 90° flexion. The anteromedial fibers showed significantly greater restraint of simulated pivot-shift rotations than the central and posterior fibers (P < .05). No significant differences (all <2 mm) were found between the anatomic centroid of the C-shaped attachment and the COE under most loadings.

      Conclusions

      The peripheral anteromedial fibers were the most important area of the ACL tibial attachment in the restraint of tibial anterior translation and internal rotation during isolated and coupled displacements. These mechanical results matched the C-shaped anteromedial attachment of the dense collagen fibers of the ACL.

      Clinical Relevance

      The most important fibers in restraining tibial displacements attach to the C-shaped anteromedial area of the native ACL tibial attachment. This finding provides an objective rationale for ACL graft position to enable it to reproduce the physiological path of load transmission for tibial restraint.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ardern C.L.
        • Webster K.E.
        • Taylor N.F.
        • Feller J.A.
        Return to sport following anterior cruciate ligament reconstruction surgery: A systematic review and meta-analysis of the state of play.
        Br J Sports Med. 2011; 45: 596-606
        • Freedman K.B.
        • D'Amato M.J.
        • Nedeff D.D.
        • et al.
        Arthroscopic anterior cruciate ligament reconstruction: A metaanalysis comparing patellar tendon and hamstring tendon autografts.
        Am J Sports Med. 2003; 31: 2-11
        • Harner C.D.
        • Giffin J.R.
        • Dunteman R.C.
        • et al.
        Evaluation and treatment of recurrent instability after anterior cruciate ligament reconstruction.
        Instr Course Lect. 2001; 50: 463-474
        • Amis A.A.
        • Dawkins G.P.
        Functional anatomy of the anterior cruciate ligament. Fibre bundle actions related to ligament replacements and injuries.
        J Bone Jt Surg Br. 1991; 73: 260-267
        • Friederich N.
        • O’Brien W.
        Functional anatomy of the cruciate ligaments.
        in: Jakob R.P. Staubli H.U. The knee and the cruciate ligaments. Springer, Heidelberg1992: 78-91
        • Hara K.
        • Mochizuki T.
        • Sekiya I.
        • et al.
        Anatomy of normal human anterior cruciate ligament attachments evaluated by divided small bundles.
        Am J Sports Med. 2009; 37: 2386-2391
        • Hefzy M.S.
        • Grood E.S.
        • Noyes F.R.
        Factors affecting the region of most isometric femoral attachments: Part II: The anterior cruciate ligament.
        Am J Sports Med. 1989; 17: 208-216
        • Dodds J.A.
        • Arnoczky S.P.
        Anatomy of the anterior cruciate ligament: A blueprint for repair and reconstruction.
        Arthroscopy. 1994; 10920: 132-139
        • Gabriel M.T.
        • Wong E.K.
        • Woo S.L.
        • et al.
        Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads.
        J Orthop Res. 2004; 22: 85-89
        • Harner C.D.
        • Baek G.H.
        • Vogrin T.M.
        • et al.
        Quantitative analysis of human cruciate ligament insertions.
        Arthroscopy. 1999; 15: 741-749
        • Piefer J.W.
        • Pflugner T.R.
        • Hwang M.D.
        • Lubowitz J.H.
        Anterior cruciate ligament femoral footprint anatomy: Systematic review of the 21st century literature.
        Arthroscopy. 2012; 28: 872-881
        • Kondo E.
        • Merican A.M.
        • Yasuda K.
        • Amis A.A.
        Biomechanical comparisons of knee stability after anterior cruciate ligament reconstruction between 2 clinically available transtibial procedures: Anatomic double bundle versus single bundle.
        Am J Sports Med. 2010; 38: 1349-1358
        • Kawaguchi Y.
        • Kondo E.
        • Takeda R.
        • et al.
        The role of fibers in the femoral attachment of the anterior cruciate ligament in resisting tibial displacement.
        Arthroscopy. 2015; 31: 435-444
        • Edwards A.
        • Bull A.M.
        • Amis A.A.
        The attachments of the anteromedial and posterolateral fibre bundles of the anterior cruciate ligament: Part 1: Tibial attachment.
        Knee Surg Sports Traumatol Arthrosc. 2007; 15: 1414-1421
        • Śmigielski R.
        • Zdanowicz U.
        • Drwięga M.
        • et al.
        Ribbon like appearance of the midsubstance fibres of the anterior cruciate ligament close to its femoral insertion site: A cadaveric study including 111 knees.
        Knee Surg Sports Traumatol Arthrosc. 2015; 23: 3143-3150
        • Mochizuki T.
        • Fujishiro H.
        • Nimura A.
        • et al.
        Anatomic and histologic analysis of the mid-substance and fan-like extension fibres of the anterior cruciate ligament during knee motion, with special reference to the femoral attachment.
        Knee Surg Sports Traumatol Arthrosc. 2014; 22: 336-344
        • Petersen W.
        • Tillmann B.
        Structure and vascularization of the cruciate ligaments of the human knee joint.
        Anat Embryol. 1999; 200: 325-334
        • Siebold R.
        • Schumacher P.
        • Fernandez F.
        • et al.
        Flat midsubstance of the anterior cruciate ligament with tibial “C”-shaped insertion site.
        Knee Surg Sports Traumatol Arthrosc. 2015; 23: 3136-3142
        • Kittl C.
        • El-Daou H.
        • Athwal K.K.
        • et al.
        The role of the anterolateral structures and the ACL in controlling laxity of the intact and ACL-deficient knee.
        Am J Sports Med. 2016; 44: 345-354
        • Lord B.R.
        • El-Daou H.
        • Sabnis B.M.
        • et al.
        Biomechanical comparison of graft structures in anterior cruciate ligament reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2016; 24: 1-10
        • Arnoczky S.P.
        Anatomy of the anterior cruciate ligament.
        Clin Orthop Relat Res. 1983; 172: 19-25
        • Girgis F.G.
        • Marshall J.L.
        • JEM Al Monajem
        The cruciate ligaments of the knee joint: anatomical, functional and experimental analysis.
        Clin Orthop Relat Res. 1975; 106: 216-231
        • Śmigielski R.
        • Zdanowicz U.
        • Drwięga M.
        • et al.
        The anatomy of the anterior cruciate ligament and its relevance to the technique of reconstruction.
        Bone Jt J. 2016; 98-B: 1020-1026
        • Hwang M.D.
        • Piefer J.W.
        • Lubowitz J.H.
        Anterior cruciate ligament tibial footprint anatomy: Systematic review of the 21st century literature.
        Arthroscopy. 2012; 28: 728-734
        • Mommersteeg T.
        • Kooloos J.
        • Blankevoort L.
        • et al.
        The fibre bundle anatomy of human cruciate ligaments.
        J Anat. 1995; 187: 461-471
        • Kim D.
        • Asai S.
        • Moon C.-W.
        • et al.
        Biomechanical evaluation of anatomic single-and double-bundle anterior cruciate ligament reconstruction techniques using the quadriceps tendon.
        Knee Surg Sports Traumatol Arthrosc. 2015; 23: 687-695
        • Morimoto Y.
        • Ferretti M.
        • Ekdahl M.
        • et al.
        Tibiofemoral joint contact area and pressure after single- and double-bundle anterior cruciate ligament reconstruction.
        Arthroscopy. 2009; 25: 62-69
        • Musahl V.
        • Voos J.E.
        • O'Loughlin P.F.
        • et al.
        Comparing stability of different single- and double-bundle anterior cruciate ligament reconstruction techniques: A cadaveric study using navigation.
        Arthroscopy. 2010; 26: S41-S48
        • Sidles J.A.
        • Larson R.V.
        • Garbini J.L.
        • et al.
        Ligament length relationships in the moving knee.
        J Orthop Res. 1988; 6: 593-610
        • Amis A.A.
        The functions of the fibre bundles of the anterior cruciate ligament in anterior drawer, rotational laxity and the pivot shift.
        Knee Surg Sports Traumatol Arthrosc. 2012; 20: 613-620
        • Lord B.R.
        • Amis A.A.
        The envelope of laxity of the pivot shift test.
        in: Musahl V. Karlsson J. Kuroda R. Zaffagnini S. Rotatory Knee Instability. Springer, Heidelberg2017: 223-234
        • Amis A.A.
        • Jakob R.P.
        Anterior cruciate ligament graft positioning, tensioning and twisting.
        Knee Surg Sports Traumatol Arthrosc. 1998; 6: S2-S12
        • Iwahashi T.
        • Shino K.
        • Nakata K.
        • et al.
        Direct anterior cruciate ligament insertion to the femur assessed by histology and 3-dimensional volume-rendered computed tomography.
        Arthroscopy. 2010; 26: S13-S20
        • Sasaki N.
        • Ishibashi Y.
        • Tsuda E.
        • et al.
        The femoral insertion of the anterior cruciate ligament: Discrepancy between macroscopic and histological observations.
        Arthroscopy. 2012; 28: 1135-1146
        • Race A.
        • Amis A.A.
        The mechanical properties of the two bundles of the human posterior cruciate ligament.
        J Biomech. 1994; 27: 13-24
        • Lorbach O.
        • Pape D.
        • Maas S.
        • et al.
        Influence of the anteromedial and posterolateral bundles of the anterior cruciate ligament on external and internal tibial rotation.
        Am J Sports Med. 2001; 38: 721-727
        • Goldsmith M.T.
        • Jansson K.S.
        • Smith S.D.
        • et al.
        Biomechanical comparison of anatomic single-and double-bundle anterior cruciate ligament reconstructions an in vitro study.
        Am J Sports Med. 2013; 41: 1595-1604
        • Yagi M.
        • Wong E.K.
        • Kanamori A.
        • et al.
        Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction.
        Am J Sports Med. 2002; 30: 660-666
        • Howell S.M.
        • Taylor M.A.
        Failure of reconstruction of the anterior cruciate ligament due to impingement by the intercondylar roof.
        J Bone Joint Surg Am. 1993; 75: 1044-1055

      Linked Article