Advertisement

Elongation Patterns of the Anterior and Posterior Borders of the Anterolateral Ligament of the Knee

      Purpose

      To compare the elongation patterns of the anterior and posterior borders of the anterolateral ligament (ALL) at varying knee flexion angles with the knee in a neutral position without any external forces and with external forces applied, including anterior-posterior translation, internal-external rotation, and varus-valgus angulation.

      Methods

      Eight cadaveric knees were tested in a custom knee testing system. Elongation of the anterior and posterior borders of the ALL was measured using a MicroScribe 3DLX system at knee flexion angles of 0°, 30°, 60°, and 90° and after the application of internal-external rotation, anterior-posterior translation, and varus-valgus angulation.

      Results

      The anterior border showed a slight noncontinuous increase in percentage elongation (0.8% ± 2.2%) whereas the posterior border showed a continuous decrease in percentage elongation (–12.0% ± 2.8%) as knee flexion increased (P < .001). Apart from the elongation of the posterior border at 90° of knee flexion, internal rotation, varus angulation, and anterior translation resulted in a significant increase in the percentage elongation of the anterior and posterior borders at each flexion angle compared with external rotation, valgus angulation, and posterior translation, respectively.

      Conclusions

      The ALL shows different elongation patterns between the anterior and posterior borders, with a continuous decrease in the percentage elongation of the posterior border as knee flexion increases.

      Clinical Relevance

      This study presents useful evidence to resolve the uncertainty regarding the change in length of the ALL at various degrees of knee flexion. This information may be helpful for deciding the optimal knee flexion angle during ALL graft fixation. The findings from this study suggest that graft fixation during ALL reconstructions should be performed at close to full extension of the knee.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kraeutler M.J.
        • Welton K.L.
        • Chahla J.
        • LaPrade R.F.
        • McCarty E.C.
        Current concepts of the anterolateral ligament of the knee: Anatomy, biomechanics, and reconstruction.
        Am J Sports Med. 2018; 46: 1235-1242
        • Czuppon S.
        • Racette B.A.
        • Klein S.E.
        • Harris-Hayes M.
        Variables associated with return to sport following anterior cruciate ligament reconstruction: A systematic review.
        Br J Sports Med. 2014; 48: 356-364
        • Grassi A.
        • Vascellari A.
        • Combi A.
        • et al.
        Return to sport after ACL reconstruction: A survey between the Italian Society of Knee, Arthroscopy, Sport, Cartilage and Orthopaedic Technologies (SIGASCOT) members.
        Eur J Orthop Surg Traumatol. 2016; 26: 509-516
        • Petersen W.
        • Zantop T.
        Return to play following ACL reconstruction: Survey among experienced arthroscopic surgeons (AGA instructors).
        Arch Orthop Trauma Surg. 2013; 133: 969-977
        • Drews B.H.
        • Kessler O.
        • Franz W.
        • Durselen L.
        • Freutel M.
        Function and strain of the anterolateral ligament part I: Biomechanical analysis.
        Knee Surg Sports Traumatol Arthrosc. 2017; 25: 1132-1139
        • Sonnery-Cottet B.
        • Lutz C.
        • Daggett M.
        • et al.
        The involvement of the anterolateral ligament in rotational control of the knee.
        Am J Sports Med. 2016; 44: 1209-1214
        • Sonnery-Cottet B.
        • Saithna A.
        • Cavalier M.
        • et al.
        Anterolateral ligament reconstruction is associated with significantly reduced ACL graft rupture rates at a minimum follow-up of 2 years.
        Am J Sports Med. 2017; 45: 1547-1557
        • Patel R.M.
        • Brophy R.H.
        Anterolateral ligament of the knee: Anatomy, function, imaging, and treatment.
        Am J Sports Med. 2018; 46: 217-223
        • Katakura M.
        • Koga H.
        • Nakamura K.
        • Sekiya I.
        • Muneta T.
        Effects of different femoral tunnel positions on tension changes in anterolateral ligament reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2017; 25: 1272-1278
        • Zens M.
        • Niemeyer P.
        • Ruhhammer J.
        • et al.
        Length changes of the anterolateral ligament during passive knee motion: A human cadaveric study.
        Am J Sports Med. 2015; 43: 2545-2552
        • Helito C.P.
        • Helito P.V.
        • Bonadio M.B.
        • et al.
        Evaluation of the length and isometric pattern of the anterolateral ligament with serial computer tomography.
        Orthop J Sports Med. 2014; 2 (2325967114562205)
        • Dodds A.L.
        • Halewood C.
        • Gupte C.M.
        • Williams A.
        • Amis A.A.
        The anterolateral ligament: Anatomy, length changes and association with the Segond fracture.
        J Bone Joint Br. 2014; 96: 325-331
        • Kent III, R.N.
        • Boorman-Padgett J.F.
        • Thein R.
        • et al.
        High interspecimen variability in engagement of the anterolateral ligament: An in vitro cadaveric study.
        Clin Orthop Relat Res. 2017; 475: 2438-2444
        • Van de Velde S.K.
        • Kernkamp W.A.
        • Hosseini A.
        • LaPrade R.F.
        • van Arkel E.R.
        • Li G.
        In vivo length changes of the anterolateral ligament and related extra-articular reconstructions.
        Am J Sports Med. 2016; 44: 2557-2562
        • Helito C.P.
        • do Amaral Jr., C.
        • Nakamichi Y.D.
        • et al.
        Why do authors differ with regard to the femoral and meniscal anatomic parameters of the knee anterolateral ligament?: Dissection by layers and a description of its superficial and deep layers.
        Orthop J Sports Med. 2016; 4 (2325967116675604)
        • Daggett M.
        • Ockuly A.C.
        • Cullen M.
        • et al.
        Femoral origin of the anterolateral ligament: An anatomic analysis.
        Arthroscopy. 2016; 32: 835-841
        • Helito C.P.
        • Demange M.K.
        • Bonadio M.B.
        • et al.
        Anatomy and histology of the knee anterolateral ligament.
        Orthop J Sports Med. 2013; 1 (2325967113513546)
        • Claes S.
        • Vereecke E.
        • Maes M.
        • Victor J.
        • Verdonk P.
        • Bellemans J.
        Anatomy of the anterolateral ligament of the knee.
        J Anat. 2013; 223: 321-328
        • Hofer J.K.
        • Gejo R.
        • McGarry M.H.
        • Lee T.Q.
        Effects of kneeling on tibiofemoral contact pressure and area in posterior cruciate-retaining and posterior cruciate-sacrificing total knee arthroplasty.
        J Arthroplasty. 2012; 27: 620-624
        • Fornalski S.
        • McGarry M.H.
        • Bui C.N.
        • Kim W.C.
        • Lee T.Q.
        Biomechanical effects of joint line elevation in total knee arthroplasty.
        Clin Biomech. 2012; 27: 824-829
        • Fornalski S.
        • McGarry M.H.
        • Csintalan R.P.
        • Fithian D.C.
        • Lee T.Q.
        Biomechanical and anatomical assessment after knee hyperextension injury.
        Am J Sports Med. 2008; 36: 80-84
        • Csintalan R.P.
        • Ehsan A.
        • McGarry M.H.
        • Fithian D.F.
        • Lee T.Q.
        Biomechanical and anatomical effects of an external rotational torque applied to the knee: A cadaveric study.
        Am J Sports Med. 2006; 34: 1623-1629
        • Lee T.Q.
        • Yang B.Y.
        • Sandusky M.D.
        • McMahon P.J.
        The effects of tibial rotation on the patellofemoral joint: Assessment of the changes in in situ strain in the peripatellar retinaculum and the patellofemoral contact pressures and areas.
        J Rehabil Res Dev. 2001; 38: 463-469
        • Wickiewicz T.L.
        • Roy R.R.
        • Powell P.L.
        • Edgerton V.R.
        Muscle architecture of the human lower limb.
        Clin Orthop Relat Res. 1983; : 275-283
        • Kernkamp W.A.
        • Van de Velde S.K.
        • Hosseini A.
        • et al.
        In vivo anterolateral ligament length change in the healthy knee during functional activities-a combined magnetic resonance and dual fluoroscopic imaging analysis.
        Arthroscopy. 2017; 33: 133-139
        • Runer A.
        • Birkmaier S.
        • Pamminger M.
        • et al.
        The anterolateral ligament of the knee: A dissection study.
        Knee. 2016; 23: 8-12

      Linked Article