Advertisement

Soft Tissue Fixation Strategies of Human Quadriceps Tendon Grafts: A Biomechanical Study

      Purpose

      To evaluate the effects of different stitching methods and suture diameters on the graft fixation of soft tissue human quadriceps tendon grafts for anterior cruciate ligament (ACL) reconstruction.

      Methods

      The Krackow locking stitch (K), whipstitch (W), and baseball stitch (B) were combined with either a 2× no. 2 (#2) or a 1× no. 5 (#5) braided composite suture for graft fixation of 36 human quadriceps tendons in 6 groups. Biomechanical testing was performed using a cyclic protocol with loads between 0 and 100 N. The maximum load until failure, cyclic elongation, and failure mode were recorded.

      Results

      The highest mean maximum load to failure was observed in the 2 Krackow stitch groups. The K#2 group had significantly higher load to failure values compared with those of the W#2 and B#2 groups (K#2, 553 ± 82 N vs W#2, 392 ± 107 N, P = .0349; K#2 vs B#2 366 ± 118 N, P = .0129). The mean cyclic elongation was lowest in the Krackow groups (K#2, 10.59 ± 2.63 mm; K#5, 13.66 ± 2.3 mm). The regular failure mode was the rupture of the suture for the Krackow stitch (8 of 12) and suture pullout for the whipstitch (11 of 12) and baseball stitch groups (12 of 12).

      Conclusions

      The double Krackow stitch with no. 2 braided composite suture exhibits a high maximum load to failure combined with a low amount of elongation in a biomechanical study for human quadriceps tendon soft tissue graft fixation. Unlike the whipstitch and the baseball stitch, it can solidly prevent suture pullout.

      Clinical Relevance

      A safe soft tissue graft fixation technique is especially important for quadriceps tendon grafts with their laminar anatomical structure and physiologically varying diameter. Unlike other grafts for ACL replacement, it fully relies on the soft tissue suture fixation to resist the pullout force.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mouarbes D.
        • Menetrey J.
        • Marot V.
        • Courtot L.
        • Berard E.
        • Cavaignac E.
        Anterior cruciate ligament reconstruction: A systematic review and meta-analysis of outcomes for quadriceps tendon autograft versus bone-patellar tendon-bone and hamstring-tendon autografts.
        Am J Sports Med. 2019; (363546518825340)
        • Herbort M.
        • Glasbrenner J.
        • Michel P.
        • et al.
        [Current techniques for operative anterior cruciate ligament repair and reconstruction].
        Sports Orthop Traumatol. 2017; 33: 367-378
        • Cavaignac E.
        • Coulin B.
        • Tscholl P.
        • Nik Mohd Fatmy N.
        • Duthon V.
        • Menetrey J.
        Is quadriceps tendon autograft a better choice than hamstring autograft for anterior cruciate ligament reconstruction? A comparative study with a mean follow-up of 3.6 Years.
        Am J Sports Med. 2017; 45: 1326-1332
        • Runer A.
        • Wierer G.
        • Herbst E.
        • et al.
        There is no difference between quadriceps- and hamstring tendon autografts in primary anterior cruciate ligament reconstruction: A 2-year patient-reported outcome study.
        Knee Surg Sports Traumatol Arthrosc. 2018; 26: 605-614
        • Lund B.
        • Nielsen T.
        • Faunø P.
        • Christiansen S.
        • Lind M.
        Is quadriceps tendon a better graft choice than patellar tendon? A prospective randomized study.
        Arthroscopy. 2014; 30: 593-598
        • Herbort M.
        • Michel P.
        • Raschke M.J.
        • et al.
        Should the ipsilateral hamstrings be used for anterior cruciate ligament reconstruction in the case of medial collateral ligament insufficiency? Biomechanical investigation regarding dynamic stabilization of the medial compartment by the hamstring muscles.
        Am J Sports Med. 2017; 45: 819-825
        • Fischer F.
        • Fink C.
        • Herbst E.
        • et al.
        Higher hamstring-to-quadriceps isokinetic strength ratio during the first post-operative months in patients with quadriceps tendon compared to hamstring tendon graft following ACL reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2018; 26: 418-425
        • Staubli H.U.
        • Schatzmann L.
        • Brunner P.
        • Rincon L.
        • Nolte L.P.
        Quadriceps tendon and patellar ligament: Cryosectional anatomy and structural properties in young adults.
        Knee Surg Sports Traumatol Arthrosc. 1996; 4: 100-110
        • Slone H.S.
        • Ashford W.B.
        • Xerogeanes J.W.
        Minimally invasive quadriceps tendon harvest and graft preparation for all-inside anterior cruciate ligament reconstruction.
        Arthrosc Tech. 2016; 5: e1049-e1056
        • Fink C.
        • Herbort M.
        • Abermann E.
        • Hoser C.
        Minimally invasive harvest of a quadriceps tendon graft with or without a bone block.
        Arthrosc Tech. 2014; 3: e509-e513
        • Sheean A.J.
        • Musahl V.
        • Slone H.S.
        • et al.
        Quadriceps tendon autograft for arthroscopic knee ligament reconstruction: Use it now, use it often.
        Br J Sports Med. 2018; 52: 698-701
        • Harris N.L.
        • Smith D.A.
        • Lamoreaux L.
        • Purnell M.
        Central quadriceps tendon for anterior cruciate ligament reconstruction. Part I: Morphometric and biomechanical evaluation.
        Am J Sports Med. 1997; 25: 23-28
        • Grob K.
        • Manestar M.
        • Filgueira L.
        • Ackland T.
        • Gilbey H.
        • Kuster M.S.
        New insight in the architecture of the quadriceps tendon.
        J Exp Orthop. 2016; 3: 32
        • Waligora A.C.
        • Johanson N.A.
        • Hirsch B.E.
        Clinical anatomy of the quadriceps femoris and extensor apparatus of the knee.
        Clin Orthop Relat Res. 2009; 467: 3297-3306
        • Hahn J.M.
        • Inceoglu S.
        • Wongworawat M.D.
        Biomechanical comparison of Krackow locking stitch versus nonlocking loop stitch with varying number of throws.
        Am J Sports Med. 2014; 42: 3003-3008
        • Sakaguchi K.
        • Tachibana Y.
        • Oda H.
        Biomechanical properties of porcine flexor tendon fixation with varying throws and stitch methods.
        Am J Sports Med. 2012; 40: 1641-1645
        • McKeon B.P.
        • Heming J.F.
        • Fulkerson J.
        • Langeland R.
        The Krackow stitch: A biomechanical evaluation of changing the number of loops versus the number of sutures.
        Arthroscopy. 2006; 22: 33-37
        • Petersen W.
        • Haner M.
        • Karpinski K.
        One-stage anterior cruciate ligament revision with autologous quadriceps tendon.
        Arthroskopie. 2018; 31: 245-251
        • Akoto R.
        • Hoeher J.
        Anterior cruciate ligament (ACL) reconstruction with quadriceps tendon autograft and press-fit fixation using an anteromedial portal technique.
        BMC Musculoskelet Disord. 2012; 13: 161
        • Domnick C.
        • Wieskotter B.
        • Raschke M.J.
        • et al.
        Evaluation of biomechanical properties: Are porcine flexor tendons and bovine extensor tendons eligible surrogates for human tendons in in vitro studies?.
        Arch Orthop Trauma Surg. 2016; 136: 1465-1471
        • Glasbrenner J.
        • Domnick C.
        • Raschke M.J.
        • et al.
        Adjustable buttons for ACL graft cortical fixation partially fail with cyclic loading and unloading.
        Knee Surg Sports Traumatol Arthrosc. 2018; : 1-7https://doi.org/10.1007/s00167-018-5262-2
        • Hapa O.
        • Barber F.A.
        • Suner G.
        • et al.
        Biomechanical comparison of tibial eminence fracture fixation with high-strength suture, EndoButton, and suture anchor.
        Arthroscopy. 2012; 28: 681-687
        • Noyes F.R.
        • Torvik P.J.
        • Hyde W.B.
        • DeLucas J.L.
        Biomechanics of ligament failure. II. An analysis of immobilization, exercise, and reconditioning effects in primates.
        J Bone Joint Surg Am. 1974; 56: 1406-1418
        • Tsukada H.
        • Ishibashi Y.
        • Tsuda E.
        • Hiraga Y.
        • Toh S.
        A biomechanical comparison of repair techniques for anterior cruciate ligament tibial avulsion fracture under cyclic loading.
        Arthroscopy. 2005; 21: 1197-1201
        • Barber F.A.
        • Howard M.S.
        • Piccirillo J.
        • Spenciner D.B.
        A biomechanical comparison of six suture configurations for soft tissue–based graft traction and fixation.
        Arthroscopy. 2019; 35: 1163-1169
        • Hong C.K.
        • Lin C.L.
        • Kuan F.C.
        • Wang P.H.
        • Yeh M.L.
        • Su W.R.
        A biomechanical evaluation of various double Krackow suture techniques for soft-tissue graft fixation.
        Arthroscopy. 2018; 34: 663-668
        • Barrow A.E.
        • Pilia M.
        • Guda T.
        • Kadrmas W.R.
        • Burns T.C.
        Femoral suspension devices for anterior cruciate ligament reconstruction: Do adjustable loops lengthen?.
        Am J Sports Med. 2014; 42: 343-349
        • Daniel D.M.
        • Stone M.L.
        • Sachs R.
        • Malcom L.
        Instrumented measurement of anterior knee laxity in patients with acute anterior cruciate ligament disruption.
        Am J Sports Med. 1985; 13: 401-407
        • Morrison L.
        • Haldane C.
        • de Sa D.
        • Findakli F.
        • Simunovic N.
        • Ayeni O.R.
        Device-assisted tensioning is associated with lower rates of graft failure when compared to manual tensioning in ACL reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2018; 26: 3690-3698
        • Lo I.K.
        • Burkhart S.S.
        • Chan K.C.
        • Athanasiou K.
        Arthroscopic knots: Determining the optimal balance of loop security and knot security.
        Arthroscopy. 2004; 20: 489-502
        • Dahl K.A.
        • Patton D.J.
        • Dai Q.
        • Wongworawat M.D.
        Biomechanical characteristics of 9 arthroscopic knots.
        Arthroscopy. 2010; 26: 813-818
        • Rodes S.A.
        • Favorito P.J.
        • Piccirillo J.M.
        • Spivey J.T.
        Performance comparison of a pretied suture knot with three conventional arthroscopic knots.
        Arthroscopy. 2015; 31: 2183-2190
        • Petersen W.
        • Forkel P.
        • Achtnich A.
        • Metzlaff S.
        • Zantop T.
        [Anatomic reconstruction of the anterior cruciate ligament in single bundle technique].
        Oper Orthop Traumatol. 2013; 25: 185-204
        • Xerogeanes J.W.
        • Mitchell P.M.
        • Karasev P.A.
        • Kolesov I.A.
        • Romine S.E.
        Anatomic and morphological evaluation of the quadriceps tendon using 3-dimensional magnetic resonance imaging reconstruction: Applications for anterior cruciate ligament autograft choice and procurement.
        Am J Sports Med. 2013; 41: 2392-2399
        • Harris J.D.
        • Brand J.C.
        • Cote M.P.
        • Faucett S.C.
        • Dhawan A.
        Research pearls: The significance of statistics and perils of pooling. Part 1: Clinical versus statistical significance.
        Arthroscopy. 2017; 33: 1102-1112

      Linked Article