Original Article| Volume 36, ISSUE 2, P481-489, February 2020

Download started.


Independent Suture Tape Reinforcement of Tripled Smaller-Diameter and Quadrupled Grafts for Anterior Cruciate Ligament Reconstruction With Tibial Screw Fixation: A Biomechanical Full Construct Model

Published:December 31, 2019DOI:


      To compare the effect of independent suture tape reinforcement on the dynamic elongation and stiffness behavior as well as ultimate strength of tripled smaller-diameter and quadrupled soft-tissue grafts for anterior cruciate ligament reconstruction (ACLR) with tibial screw fixation in a biomechanical in vitro study.


      Tripled smaller-diameter (8 mm) and quadrupled (9 mm) bovine tendon grafts with and without suture tape reinforcement (n = 8 in each group) were tested using femoral suspensory and tibial interference screw fixation. The suture tape was femoral sided and fixed independent from the graft by passing it through the suspensory button and securing the 2 open tibial strands with a secondary interference screw. Dynamic testing was performed in position and force control at 250 N and 400 N, followed by pull to failure with the mode of failure noted. Dynamic elongation, stiffness, and ultimate strength were analyzed.


      Tripled constructs showed a significantly worse structural performance than quadrupled constructs at higher loads. Reinforcement of tripled and quadrupled grafts substantially decreased total elongation by 56% (4.54 ± 0.75 mm vs 2.01 ± 0.50 mm, P < .001) and 39% (3.25 ± 0.49 mm vs 1.98 ± 0.51 mm, P < .001), respectively, by significantly increasing dynamic stiffness. No statistical significance was found between the reinforced groups. Failure loads of reinforced tripled (1,074 ± 148 N vs 829 ± 100 N, P = .003) and quadrupled (1,125 ± 157 N vs 939 ± 76 N, P = .023) grafts were also significantly improved.


      Independent reinforcement of soft-tissue grafts with suture tape strengthened the performance especially of tripled smaller-diameter grafts for ACLR with tibial screw fixation by significantly improving dynamic elongation at increased stiffness and ultimate strength. Quadrupled reinforced grafts showed no over-constraining and structurally behaved similarly to tripled grafts with reinforcement.

      Clinical Relevance

      Independent reinforcement for ACLR may provide an option for protecting autografts or allografts against irreversible lengthening during the maturation and remodeling phases of healing.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Conte E.J.
        • Hyatt A.E.
        • Gatt Jr., C.J.
        • Dhawan A.
        Hamstring autograft size can be predicted and is a potential risk factor for anterior cruciate ligament reconstruction failure.
        Arthroscopy. 2014; 30: 882-890
        • Nuelle C.W.
        • Cook J.L.
        • Gallizzi M.A.
        • Smith P.A.
        Posterior single-incision semitendinosus harvest for a quadrupled anterior cruciate ligament graft construct: Determination of graft length and diameter based on patient sex, height, weight, and body mass index.
        Arthroscopy. 2015; 31: 684-690
        • Boniello M.R.
        • Schwingler P.M.
        • Bonner J.M.
        • Robinson S.P.
        • Cotter A.
        • Bonner K.F.
        Impact of hamstring graft diameter on tendon strength: A biomechanical study.
        Arthroscopy. 2015; 31: 1084-1090
        • Treme G.
        • Diduch D.R.
        • Billante M.J.
        • Miller M.D.
        • Hart J.M.
        Hamstring graft size prediction.
        Am J Sports Med. 2008; 36: 2204-2209
        • Jacobs C.A.
        • Burnham J.M.
        • Makhni E.
        • Malempati C.S.
        • Swart E.
        • Johnson D.L.
        Allograft augmentation of hamstring autograft for younger patients undergoing anterior cruciate ligament reconstruction.
        Am J Sports Med. 2016; 45: 892-899
        • Burrus M.T.
        • Werner B.C.
        • Crow A.J.
        • et al.
        Increased failure rates after anterior cruciate ligament reconstruction with soft-tissue autograft-allograft hybrid grafts.
        Arthroscopy. 2015; 31: 2342-2351
        • Leo B.M.
        • Krill M.
        • Barksdale L.
        • Alvarez-Pinzon A.M.
        Failure rate and clinical outcomes of anterior cruciate ligament reconstruction using autograft hamstring versus a hybrid graft.
        Arthroscopy. 2016; 32: 2357-2363
        • Perkins C.A.
        • Busch M.T.
        • Christino M.
        • Herzog M.M.
        • Willimon S.C.
        Allograft augmentation of hamstring anterior cruciate ligament autografts is associated with increased graft failure in children and adolescents.
        Am J Sports Med. 2019; 47: 1576-1582
        • Lubowitz J.H.
        • MacKay G.
        • Gilmer B.
        Knee medial collateral ligament and posteromedial corner anatomic repair with internal bracing.
        Arthrosc Tech. 2014; 3: e505-e508
        • Wilson W.T.
        • Hopper G.P.
        • Byrne P.A.
        • MacKay G.M.
        Anterior cruciate ligament repair with internal brace ligament augmentation.
        Surg Technol Int. 2016; 29: 273-278
        • Heusdens C.H.W.
        • Hopper G.P.
        • Dossche L.
        • Roelant E.
        • Mackay G.M.
        Anterior cruciate ligament repair with independent suture tape reinforcement: A case series with 2-year follow-up.
        Knee Surg Sports Traumatol Arthrosc. 2019; 27: 60-67
        • Bachmaier S.
        • Smith P.A.
        • Bley J.
        • Wijdicks C.A.
        Independent suture tape reinforcement of small and standard diameter grafts for anterior cruciate ligament reconstruction: A biomechanical full construct model.
        Arthroscopy. 2018; 34: 490-499
        • Aerssens J.
        • Boonen S.
        • Lowet G.
        • Dequeker J.
        Interspecies differences in bone composition, density, and quality: Potential implications for in vivo bone research.
        Endocrinology. 1998; 139: 663-670
        • Aga C.
        • Rasmussen M.T.
        • Smith S.D.
        • et al.
        Biomechanical comparison of interference screws and combination screw and sheath devices for soft tissue anterior cruciate ligament reconstruction on the tibial side.
        Am J Sports Med. 2013; 41: 841-848
        • Domnick C.
        • Wieskötter B.
        • Raschke M.J.
        • et al.
        Evaluation of biomechanical properties: Are porcine flexor tendons and bovine extensor tendons eligible surrogates for human tendons in in vitro studies?.
        Arch Orthop Trauma Surg. 2016; 136: 1465-1471
        • Arneja S.
        • McConkey M.O.
        • Mulpuri K.
        • et al.
        Graft tensioning in anterior cruciate ligament reconstruction: A systematic review of randomized controlled trials.
        Arthroscopy. 2009; 25: 200-207
        • Li G.
        • Defrate L.E.
        • Rubash H.E.
        • Gill T.J.
        In vivo kinematics of the ACL during weight-bearing knee flexion.
        J Orthop Res. 2005; 23: 340-344
        • Taylor K.A.
        • Cutcliffe H.C.
        • Queen R.M.
        • et al.
        In vivo measurement of ACL length and relative strain during walking.
        J Biomech. 2013; 46: 478-483
        • Woo S.L.-Y.
        • Hollis J.M.
        • Adams D.J.
        • Lyon R.M.
        • Takai S.
        Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation.
        Am J Sports Med. 1991; 19: 217-225
        • Monaco E.
        • Bachmaier S.
        • Fabbri M.
        • Lanzetti R.M.
        • Wijdicks C.A.
        • Ferretti A.
        Intraoperative workflow for all-inside anterior cruciate ligament reconstruction: An in vitro biomechanical evaluation of preconditioning and knot tying.
        Arthroscopy. 2018; 34: 538-545
        • Noonan B.C.
        • Bachmaier S.
        • Wijdicks C.A.
        • Bedi A.
        Intraoperative preconditioning of fixed and adjustable loop suspensory anterior cruciate ligament reconstruction with tibial screw fixation—An in vitro biomechanical evaluation using a porcine model.
        Arthroscopy. 2018; 34: 2668-2674
        • Pennock A.T.
        • Ho B.
        • Parvanta K.
        • et al.
        Does allograft augmentation of small-diameter hamstring autograft ACL grafts reduce the incidence of graft retear?.
        Am J Sports Med. 2017; 45: 334-338
        • Schimoler P.J.
        • Braun D.T.
        • Miller M.C.
        • Akhavan S.
        Quadrupled hamstring graft strength as a function of clinical sizing.
        Arthroscopy. 2015; 31: 1091-1096
        • Noyes F.R.
        • Butler D.L.
        • Grood E.S.
        • Zernicke R.F.
        • Hefzy M.S.
        Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions.
        J Bone Joint Surg Am. 1984; 66: 344-352
        • Smith P.A.
        • DeBerardino T.M.
        Tibial fixation properties of a continuous-loop ACL hamstring graft construct with suspensory fixation in porcine bone.
        J Knee Surg. 2015; 28: 506-512
        • Mayr R.
        • Heinrichs C.H.
        • Eichinger M.
        • Coppola C.
        • Schmoelz W.
        • Attal R.
        Biomechanical comparison of 2 anterior cruciate ligament graft preparation techniques for tibial fixation: Adjustable-length loop cortical button or interference screw.
        Am J Sports Med. 2015; 43: 1380-1385
        • Karkoscha R.F.
        • Ettinger M.
        • Bachmaier S.
        • Wijdicks C.A.
        • Smith T.
        Adjustable-length loop cortical button versus interference screw fixation in quadriceps tendon anterior cruciate ligament reconstruction—A biomechanical in vitro study.
        Clin Biomech (Bristol, Avon). 2018; 60: 60-65
        • Toutoungi D.E.
        • Lu T.W.
        • Leardini A.
        • Catani F.
        • O'Connor J.J.
        Cruciate ligament forces in the human knee during rehabilitation exercises.
        Clin Biomech (Bristol, Avon). 2000; 15: 176-187
        • Shelburne K.B.
        • Pandy M.G.
        • Anderson F.C.
        • Torry M.R.
        Pattern of anterior cruciate ligament force in normal walking.
        J Biomech. 2004; 37: 797-805
        • Weiler A.
        • Hoffmann R.F.
        • Siepe C.J.
        • Kolbeck S.F.
        • Südkamp N.P.
        The influence of screw geometry on hamstring tendon interference fit fixation.
        Am J Sports Med. 2000; 28: 356-359

      Linked Article