Advertisement

Cam Osteochondroplasty for Femoroacetabular Impingement Increases Microinstability in Deep Flexion: A Cadaveric Study

Published:September 10, 2020DOI:https://doi.org/10.1016/j.arthro.2020.08.037

      Purpose

      The purpose of this in vitro cadaveric study was to examine the contributions of each surgical stage during cam femoroacetabular impingement (FAI) surgery (i.e., intact-cam hip, T-capsulotomy, cam resection, and capsular repair) toward hip range of motion, translation, and microinstability.

      Methods

      Twelve cadaveric cam hips were denuded to the capsule and mounted onto a robotic tester. The hips were positioned in several flexion positions—full extension, neutral (0°), 30° of flexion, and 90° of flexion—and performed internal-external rotations to 5 Nm of torque in each position. The hips underwent a series of surgical stages (T-capsulotomy, cam resection, and capsular repair) and were retested after each stage. Changes in range of motion, translation, and microinstability (overall translation normalized by femoral head radius) were measured after each stage.

      Results

      Regarding range of motion, cam resection increased internal rotation at 90° of flexion (change in internal rotation = +6°, P = .001) but did not affect external rotation. Capsular repair restrained external rotation compared with the cam resection stage (change in external rotation = –8° to –4°, P ≤ .04). In terms of translation, the hip translated after cam resection at 90° of flexion in the medial-lateral plane (change in translation = +1.9 mm, P = .04) relative to the intact and capsulotomy stages. Regarding microinstability, capsulotomy increased microinstability in 30° of flexion (change in microinstability [ΔM] = +0.05, P = .003), but microinstability did not further increase after cam resection. At 90° of flexion, microinstability did not increase after capsulotomy (ΔM = +0.03, P = .2) but substantially increased after cam resection (ΔM = +0.08, P = .03), accounting for a 31% change with respect to the intact stage.

      Conclusions

      Cam resection increased microinstability by 31% during deep hip flexion relative to the intact hip. This finding suggests that iatrogenic microinstability may be due to separation of the labral seal and resected contour of the femoral head.

      Clinical Relevance

      Our in vitro study showed that, at time zero and prior to postoperative recovery, excessive motion after cam resection could disrupt the labral seal. Complete cam resection should be performed cautiously to avoid disruption of the labral seal and postoperative microinstability.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ganz R.
        • Parvizi J.
        • Beck M.
        • Leunig M.
        • Notzli H.
        • Siebenrock K.A.
        Femoroacetabular impingement: A cause for osteoarthritis of the hip.
        Clin Orthop Relat Res. 2003; : 112-120
        • Beaulé P.E.
        • Grammatopoulos G.
        • Speirs A.
        • et al.
        Unravelling the hip pistol grip/cam deformity: Origins to joint degeneration.
        J Orthop Res. 2018; 36: 3125-3135
        • Ng K.C.G.
        • El Daou H.
        • Bankes M.J.K.
        • Rodriguez y Baena F.
        • Jeffers J.R.T.
        Hip joint torsional loading before and after cam femoroacetabular impingement surgery.
        Am J Sports Med. 2019; 47: 420-430
        • Ng K.C.G.
        • Lamontagne M.
        • Jeffers J.R.T.
        • Grammatopoulos G.
        • Beaule P.E.
        Anatomic predictors of sagittal hip and pelvic motions in patients with a cam deformity.
        Am J Sports Med. 2018; 46: 1331-1342
        • Ng K.C.G.
        • Mantovani G.
        • Modenese L.
        • Beaule P.E.
        • Lamontagne M.
        Altered walking and muscle patterns reduce hip contact forces in individuals with symptomatic cam femoroacetabular impingement.
        Am J Sports Med. 2018; 46: 2615-2623
        • Canham C.D.
        • Yen Y.M.
        • Giordano B.D.
        Does femoroacetabular impingement cause hip instability? A systematic review.
        Arthroscopy. 2016; 32: 203-208
        • Kolo F.C.
        • Charbonnier C.
        • Pfirrmann C.W.
        • et al.
        Extreme hip motion in professional ballet dancers: Dynamic and morphological evaluation based on magnetic resonance imaging.
        Skeletal Radiol. 2013; 42: 689-698
        • Mitchell R.J.
        • Gerrie B.J.
        • McCulloch P.C.
        • et al.
        Radiographic evidence of hip microinstability in elite ballet.
        Arthroscopy. 2016; 32: 1038-1044.e1
        • Kalisvaart M.M.
        • Safran M.R.
        Microinstability of the hip—It does exist: Etiology, diagnosis and treatment.
        J Hip Preserv Surg. 2015; 2: 123-135
        • Devitt B.M.
        • Smith B.N.
        • Stapf R.
        • Tacey M.
        • O'Donnell J.M.
        Generalized joint hypermobility is predictive of hip capsular thickness.
        Orthop J Sports Med. 2017; 5 (2325967117701882)
        • Mayer S.W.
        • Abdo J.C.
        • Hill M.K.
        • Kestel L.A.
        • Pan Z.
        • Novais E.N.
        Femoroacetabular impingement is associated with sports-related posterior hip instability in adolescents: A matched-cohort study.
        Am J Sports Med. 2016; 44: 2299-2303
        • Harris J.D.
        • Gerrie B.J.
        • Lintner D.M.
        • Varner K.E.
        • McCulloch P.C.
        Microinstability of the hip and the splits radiograph.
        Orthopedics. 2016; 39: e169-e175
        • Cerezal L.
        • Arnaiz J.
        • Canga A.
        • et al.
        Emerging topics on the hip: Ligamentum teres and hip microinstability.
        Eur J Radiol. 2012; 81: 3745-3754
        • Johannsen A.M.
        • Ejnisman L.
        • Behn A.W.
        • Shibata K.
        • Thio T.
        • Safran M.R.
        Contributions of the capsule and labrum to hip mechanics in the context of hip microinstability.
        Orthop J Sports Med. 2019; 7 (2325967119890846)
        • Packer J.D.
        • Cowan J.B.
        • Rebolledo B.J.
        • et al.
        The cliff sign: A new radiographic sign of hip instability.
        Orthop J Sports Med. 2018; 6 (2325967118807176)
        • Bolia I.
        • Chahla J.
        • Locks R.
        • Briggs K.
        • Philippon M.J.
        Microinstability of the hip: A previously unrecognized pathology.
        Muscles Ligaments Tendons J. 2016; 6: 354-360
        • Hoppe D.J.
        • Truntzer J.N.
        • Shapiro L.M.
        • Abrams G.D.
        • Safran M.R.
        Diagnostic accuracy of 3 physical examination tests in the assessment of hip microinstability.
        Orthop J Sports Med. 2017; 5 (2325967117740121)
        • Economopoulos K.J.
        • Kweon C.Y.
        • Gee A.O.
        • Morris S.T.
        • Hassebrock J.D.
        • Chhabra A.
        The pull test: A dynamic test to confirm hip microinstability.
        Arthrosc Sports Med Rehabil. 2019; 1: e67-e74
        • Han S.
        • Alexander J.W.
        • Thomas V.S.
        • et al.
        Does capsular laxity lead to microinstability of the native hip?.
        Am J Sports Med. 2018; 46: 1315-1323
        • Dangin A.
        • Tardy N.
        • Wettstein M.
        • May O.
        • Bonin N.
        Microinstability of the hip: A review.
        Orthop Traumatol Surg Res. 2016; 102: S301-S309
        • Hebert C.
        • Smyth M.P.
        • Woodard E.
        • Bills C.C.
        • Mihalko M.J.
        • Mihalko W.M.
        Effects of hip joint transverse plane range of motion with a modeled effusion and capsular tear: A cadaveric study.
        Clin Biomech. 2017; 42: 115-119
        • Jackson T.J.
        • Peterson A.B.
        • Akeda M.
        • et al.
        Biomechanical effects of capsular shift in the treatment of hip microinstability: Creation and testing of a novel hip instability model.
        Am J Sports Med. 2016; 44: 689-695
        • Johannsen A.M.
        • Behn A.W.
        • Shibata K.
        • Ejnisman L.
        • Thio T.
        • Safran M.R.
        The role of anterior capsular laxity in hip microinstability: A novel biomechanical model.
        Am J Sports Med. 2019; 47: 1151-1158
        • Bullough P.
        • Goodfellow J.
        • O'Conner J.
        The relationship between degenerative changes and load-bearing in the human hip.
        J Bone Joint Surg Br. 1973; 55: 746-758
        • Menschik F.
        The hip joint as a conchoid shape.
        J Biomech. 1997; 30: 971-973
        • Abrams G.D.
        • Hart M.A.
        • Takami K.
        • et al.
        Biomechanical evaluation of capsulotomy, capsulectomy, and capsular repair on hip rotation.
        Arthroscopy. 2015; 31: 1511-1517
        • Wuerz T.H.
        • Song S.H.
        • Grzybowski J.S.
        • et al.
        Capsulotomy size affects hip joint kinematic stability.
        Arthroscopy. 2016; 32: 1571-1580
        • Philippon M.J.
        • Trindade C.A.
        • Goldsmith M.T.
        • et al.
        Biomechanical assessment of hip capsular repair and reconstruction procedures using a 6 degrees of freedom robotic system.
        Am J Sports Med. 2017; (363546517697956)
        • Khair M.M.
        • Grzybowski J.S.
        • Kuhns B.D.
        • Wuerz T.H.
        • Shewman E.
        • Nho S.J.
        The effect of capsulotomy and capsular repair on hip distraction: A cadaveric investigation.
        Arthroscopy. 2017; 33: 559-565
        • Fagotti L.
        • Kemler B.R.
        • Utsunomiya H.
        • et al.
        Effects of capsular reconstruction with an iliotibial band allograft on distractive stability of the hip joint: A biomechanical study.
        Am J Sports Med. 2018; 46: 3429-3436
        • Weber A.E.
        • Neal W.H.
        • Mayer E.N.
        • et al.
        Vertical extension of the T-capsulotomy incision in hip arthroscopic surgery does not affect the force required for hip distraction: Effect of capsulotomy size, type, and subsequent repair.
        Am J Sports Med. 2018; 46: 3127-3133
        • Agricola R.
        • Heijboer M.P.
        • Bierma-Zeinstra S.M.
        • Verhaar J.A.
        • Weinans H.
        • Waarsing J.H.
        Cam impingement causes osteoarthritis of the hip: A nationwide prospective cohort study (CHECK).
        Ann Rheum Dis. 2013; 72: 918-923
        • Reichenbach S.
        • Leunig M.
        • Werlen S.
        • et al.
        Association between cam-type deformities and magnetic resonance imaging-detected structural hip damage: A cross-sectional study in young men.
        Arthritis Rheum. 2011; 63: 4023-4030
        • Ng K.C.G.
        • Lamontagne M.
        • Adamczyk A.P.
        • Rakhra K.S.
        • Beaule P.E.
        Patient-specific anatomical and functional parameters provide new insights into the pathomechanism of cam FAI.
        Clin Orthop Relat Res. 2015; 473: 1289-1296
        • Ng K.C.G.
        • Lamontagne M.
        • Beaule P.E.
        Differences in anatomical parameters between the affected and unaffected hip in patients with bilateral cam-type deformities.
        Clin Biomech. 2016; 33: 13-19
        • Hatem M.A.
        • da Cunha L.A.M.
        • Abdo J.C.M.
        • Martin H.D.
        Parameters for assessment of the inferior acetabulum morphology in 300 adult hips.
        J Hip Preserv Surg. 2017; 4: 97-105
        • Anda S.
        • Svenningsen S.
        • Dale L.G.
        • Benum P.
        The acetabular sector angle of the adult hip determined by computed tomography.
        Acta Radiol Diagn (Stockh). 1986; 27: 443-447
        • Hack K.
        • Di Primio G.
        • Rakhra K.
        • Beaule P.E.
        Prevalence of cam-type femoroacetabular impingement morphology in asymptomatic volunteers.
        J Bone Joint Surg Am. 2010; 92: 2436-2444
        • Rakhra K.S.
        • Sheikh A.M.
        • Allen D.
        • Beaule P.E.
        Comparison of MRI alpha angle measurement planes in femoroacetabular impingement.
        Clin Orthop Relat Res. 2009; 467: 660-665
        • El Daou H.
        • Ng K.C.G.
        • Van Arkel R.
        • Jeffers J.R.T.
        • Rodriguez y Baena F.
        Robotic hip joint testing: Development and experimental protocols.
        Med Eng Phys. 2019; 63: 57-62
        • van Arkel R.J.
        • Jeffers J.R.
        In vitro hip testing in the International Society of Biomechanics coordinate system.
        J Biomech. 2016; 49: 4154-4158
        • Wu G.
        • Siegler S.
        • Allard P.
        • et al.
        ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—Part I: Ankle, hip, and spine. International Society of Biomechanics.
        J Biomech. 2002; 35: 543-548
        • Camomilla V.
        • Cereatti A.
        • Vannozzi G.
        • Cappozzo A.
        An optimized protocol for hip joint centre determination using the functional method.
        J Biomech. 2006; 39: 1096-1106
        • Boulay C.
        • Tardieu C.
        • Hecquet J.
        • et al.
        Sagittal alignment of spine and pelvis regulated by pelvic incidence: Standard values and prediction of lordosis.
        Eur Spine J. 2006; 15: 415-422
        • Legaye J.
        • Duval-Beaupere G.
        • Hecquet J.
        • Marty C.
        Pelvic incidence: A fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves.
        Eur Spine J. 1998; 7: 99-103
        • Kittl C.
        • El-Daou H.
        • Athwal K.K.
        • et al.
        The role of the anterolateral structures and the ACL in controlling laxity of the intact and ACL-deficient knee.
        Am J Sports Med. 2016; 44: 345-354
        • Philippon M.J.
        • Nepple J.J.
        • Campbell K.J.
        • et al.
        The hip fluid seal—Part I: The effect of an acetabular labral tear, repair, resection, and reconstruction on hip fluid pressurization.
        Knee Surg Sports Traumatol Arthrosc. 2014; 22: 722-729
        • Ito H.
        • Song Y.
        • Lindsey D.P.
        • Safran M.R.
        • Giori N.J.
        The proximal hip joint capsule and the zona orbicularis contribute to hip joint stability in distraction.
        J Orthop Res. 2009; 27: 989-995
        • Safran M.R.
        • Lopomo N.
        • Zaffagnini S.
        • et al.
        In vitro analysis of peri-articular soft tissues passive constraining effect on hip kinematics and joint stability.
        Knee Surg Sports Traumatol Arthrosc. 2013; 21: 1655-1663
        • Safran M.R.
        Microinstability of the hip-gaining acceptance.
        J Am Acad Orthop Surg. 2019; 27: 12-22
        • Matsuda D.K.
        Editorial Commentary: Hip capsule: To repair or not?.
        Arthroscopy. 2017; 33: 116-117
        • Frank R.M.
        • Lee S.
        • Bush-Joseph C.A.
        • Kelly B.T.
        • Salata M.J.
        • Nho S.J.
        Improved outcomes after hip arthroscopic surgery in patients undergoing T-capsulotomy with complete repair versus partial repair for femoroacetabular impingement: A comparative matched-pair analysis.
        Am J Sports Med. 2014; 42: 2634-2642
        • Ng K.C.G.
        • Jeffers J.R.T.
        • Beaulé P.E.
        Hip joint capsular anatomy, mechanics, and surgical management.
        J Bone Joint Surg Am. 2019; 101: 2141-2151
        • Baha P.
        • Burkhart T.A.
        • Getgood A.
        • Degen R.M.
        Complete capsular repair restores native kinematics after interportal and T-capsulotomy.
        Am J Sports Med. 2019; 47: 1451-1458
        • Bullough P.
        • Goodfellow J.
        • Greenwald A.S.
        • O'Connor J.
        Incongruent surfaces in the human hip joint.
        Nature. 1968; 217: 1290
        • Nepple J.J.
        • Philippon M.J.
        • Campbell K.J.
        • et al.
        The hip fluid seal—Part II: The effect of an acetabular labral tear, repair, resection, and reconstruction on hip stability to distraction.
        Knee Surg Sports Traumatol Arthrosc. 2014; 22: 730-736
        • Dwyer M.K.
        • Jones H.L.
        • Hogan M.G.
        • Field R.E.
        • McCarthy J.C.
        • Noble P.C.
        The acetabular labrum regulates fluid circulation of the hip joint during functional activities.
        Am J Sports Med. 2014; 42: 812-819
        • Dwyer M.K.
        • Jones H.L.
        • Field R.E.
        • McCarthy J.C.
        • Noble P.C.
        Femoroacetabular impingement negates the acetabular labral seal during pivoting maneuvers but not gait.
        Clin Orthop Relat Res. 2015; 473: 602-607
        • Suppauksorn S.
        • Beck E.C.
        • Rasio J.
        • et al.
        A cadaveric study of cam-type femoroacetabular impingement: Biomechanical comparison of contact pressures between cam morphology, partial femoral osteoplasty, and complete femoral osteoplasty.
        Arthroscopy. 2020; 36: 2425-2432
        • Degen R.M.
        • Mayer S.W.
        • Fields K.G.
        • Coleman S.H.
        • Kelly B.T.
        • Nawabi D.H.
        Functional outcomes and cam recurrence after arthroscopic treatment of femoroacetabular impingement in adolescents.
        Arthroscopy. 2017; 33: 1361-1369
        • Naal F.D.
        • Muller A.
        • Varghese V.D.
        • Wellauer V.
        • Impellizzeri F.M.
        • Leunig M.
        Outcome of hip impingement surgery: Does generalized joint hypermobility matter?.
        Am J Sports Med. 2017; 45: 1309-1314
        • Speirs A.D.
        • Rakhra K.S.
        • Weir Weiss M.J.
        • Beaule P.E.
        Bone density changes following surgical correction of femoroacetabular impingement deformities.
        Osteoarthritis Cartilage. 2018; 26: 1683-1690
        • Strickland C.D.
        • Kraeutler M.J.
        • Brick M.J.
        • et al.
        MRI evaluation of repaired versus unrepaired interportal capsulotomy in simultaneous bilateral hip arthroscopy: A double-blind, randomized controlled trial.
        J Bone Joint Surg Am. 2018; 100: 91-98
        • Ortiz-Declet V.
        • Mu B.
        • Chen A.W.
        • et al.
        Should the capsule be repaired or plicated after hip arthroscopy for labral tears associated with femoroacetabular impingement or instability? A systematic review.
        Arthroscopy. 2018; 34: 303-318
        • Domb B.G.
        • Chaharbakhshi E.O.
        • Perets I.
        • Walsh J.P.
        • Yuen L.C.
        • Ashberg L.J.
        Patient-reported outcomes of capsular repair versus capsulotomy in patients undergoing hip arthroscopy: Minimum 5-year follow-up—A matched comparison study.
        Arthroscopy. 2018; 34: 853-863.e1
        • Domb B.G.
        • Philippon M.J.
        • Giordano B.D.
        Arthroscopic capsulotomy, capsular repair, and capsular plication of the hip: Relation to atraumatic instability.
        Arthroscopy. 2013; 29: 162-173
        • Dippmann C.
        • Kraemer O.
        • Lund B.
        • et al.
        Multicentre study on capsular closure versus non-capsular closure during hip arthroscopy in Danish patients with femoroacetabular impingement (FAI): Protocol for a randomised controlled trial.
        BMJ Open. 2018; 8e019176
        • Beck E.C.
        • Suppauksorn S.
        • Nho S.J.
        The role of comprehensive capsular management in hip arthroscopy for the treatment of femoroacetabular impingement syndrome.
        Arthroscopy. 2020; 36: 9-11
        • Byrd J.W.
        • Jones K.S.
        Arthroscopic management of femoroacetabular impingement: Minimum 2-year follow-up.
        Arthroscopy. 2011; 27: 1379-1388
        • Domb B.G.
        • Shindle M.K.
        • McArthur B.
        • Voos J.E.
        • Magennis E.M.
        • Kelly B.T.
        Iliopsoas impingement: A newly identified cause of labral pathology in the hip.
        HSS J. 2011; 7: 145-150
        • Weber A.E.
        • Kuhns B.D.
        • Cvetanovich G.L.
        • et al.
        Does the hip capsule remain closed after hip arthroscopy with routine capsular closure for femoroacetabular impingement? A magnetic resonance imaging analysis in symptomatic postoperative patients.
        Arthroscopy. 2017; 33: 108-115
        • Neumann D.A.
        Kinesiology of the hip: A focus on muscular actions.
        J Orthop Sports Phys Ther. 2010; 40: 82-94
        • Hogervorst T.
        • Vereecke E.E.
        Evolution of the human hip. Part 2: Muscling the double extension.
        J Hip Preserv Surg. 2015; 2: 3-14
        • Bardakos N.V.
        • Villar R.N.
        Predictors of progression of osteoarthritis in femoroacetabular impingement: A radiological study with a minimum of ten years follow-up.
        J Bone Joint Surg Br. 2009; 91: 162-169
        • Bedi A.
        • Dolan M.
        • Leunig M.
        • Kelly B.T.
        Static and dynamic mechanical causes of hip pain.
        Arthroscopy. 2011; 27: 235-251