Advertisement

Platelet-Rich Plasma Devices Can Be Used to Isolate Stem Cells From Synovial Fluid at the Point of Care

Published:September 30, 2020DOI:https://doi.org/10.1016/j.arthro.2020.09.035

      Purpose

      To assess whether point-of-care devices designed for collecting cellular components from blood or bone marrow could be used to isolate viable stem cells from synovial fluid.

      Methods

      Male and female patients older than 18 years old with either an acute, anterior cruciate ligament (ACL) injury or knee osteoarthritis (OA) with a minimum estimated 20 mL of knee effusion volunteered. Ten patients with an ACL injury and 10 patients with OA were enrolled. Two milliliters of collected synovial effusion were analyzed and cultured for cellular content. The remaining fluid was combined with whole blood and processed using a buffy-coat based platelet-rich plasma (PRP) processing system. Specimens were analyzed for cell counts, colony-forming unit (CFU) assays, differentiation assays, and flow cytometry.

      Results

      ACL effusion fluid contained 42.1 ± 20.7 CFU/mL and OA effusion fluid contained 65.4 ± 42.1 CFU/mL. After PRP processing, the counts in ACL-PRP were 101.6 ± 66.1 CFU/mL and 114.8 ± 73.4 CFU/mL in the OA-PRP. Cells showed tri-lineage differentiation potential when cultured under appropriate parameters. When analyzed with flow cytometry, >95% of cells produced with culturing expressed cell surface markers typically expressed by known stem cell populations, specifically CD45–, CD73+, CD29+, CD44+, CD105+, and CD90+.

      Conclusions

      Multipotent viable stem cells can be harvested from knee synovial fluid, associated with an ACL injury or OA, and concentrated with a buffy coat–based PRP-processing device.

      Clinical Relevance

      PRP devices can be used to harvest stem cells from effusion fluids. Methods to use effusion fluid associated with an ACL injury and OA should be investigated further.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Harvanová D.
        • Tóthová T.
        • Sarissky M.
        • Amrichová J.
        • Rosocha J.
        Isolation and characterization of synovial mesenchymal stem cells.
        Folia Biol (Praha). 2011; 57: 119-124
        • Kim M.J.
        • Son M.J.
        • Son M.Y.
        • et al.
        Generation of human induced pluripotent stem cells from osteoarthritis patient–derived synovial cells.
        Arthritis Rheum. 2011; 63: 3010-3021
        • Koyama N.
        • Okubo Y.
        • Nakao K.
        • Osawa K.
        • Fujimura K.
        • Bessho K.
        Pluripotency of mesenchymal cells derived from synovial fluid in patients with temporomandibular joint disorder.
        Life Sci. 2011; 89: 741-747
        • Caplan A.I.
        Mesenchymal stem cells.
        J Orthop Res. 1991; 9: 641-650
        • Murphy M.B.
        • Moncivais K.
        • Caplan A.I.
        Mesenchymal stem cells: Environmentally responsive therapeutics for regenerative medicine.
        Exp Mol Med. 2013; 45: e54
        • Ugarte F.
        • Forsberg E.C.
        Haematopoietic stem cell niches: New insights inspire new questions.
        EMBO J. 2013; 32: 2535-2547
        • Morikawa D.
        • Johnson J.D.
        • Kia C.
        • et al.
        Examining the potency of subacromial bursal cells as a potential augmentation for rotator cuff healing: An in vitro study.
        Arthroscopy. 2019; 35: 2978-2988
        • Suzuki S.
        • Muneta T.
        • Tsuji K.
        • et al.
        Properties and usefulness of aggregates of synovial mesenchymal stem cells as a source for cartilage regeneration.
        Arthritis Res Ther. 2012; 14: R136
        • Horie M.
        • Driscoll M.D.
        • Sampson H.W.
        • et al.
        Implantation of allogenic synovial stem cells promotes meniscal regeneration in a rabbit meniscal defect model.
        J Bone Joint Surg Am. 2012; 94: 701-712
        • Sekiya I.
        • Ojima M.
        • Suzuki S.
        • et al.
        Human mesenchymal stem cells in synovial fluid increase in the knee with degenerated cartilage and osteoarthritis.
        J Orthop Res. 2012; 30: 943-949
        • Zhu H.
        • Jiang X.X.
        • Wu Y.
        • et al.
        Identification of mesenchymal stem cells derived from rheumatoid arthritis synovial fluid and their regulatory effect on osteoblast formation.
        Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2009; 17 ([in Chinese]): 977-980
        • Wang Y.
        • Johnsen H.E.
        • Mortensen S.
        • et al.
        Changes in circulating mesenchymal stem cells, stem cell homing factor, and vascular growth factors in patients with acute ST elevation myocardial infarction treated with primary percutaneous coronary intervention.
        Heart. 2006; 92: 768-774
        • Mansilla E.
        • Marín G.H.
        • Drago H.
        • et al.
        Bloodstream cells phenotypically identical to human mesenchymal bone marrow stem cells circulate in large amounts under the influence of acute large skin damage: New evidence for their use in regenerative medicine.
        Transplant Proc. 2006; 38: 967-969
        • Rankin S.M.
        Impact of bone marrow on respiratory disease.
        Curr Opin Pharmacol. 2008; 8: 236-241
        • Rochefort G.Y.
        • Delorme B.
        • Lopez A.
        • et al.
        Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia.
        Stem Cells. 2006; 24: 2202-2208
        • Matsumoto T.
        • Ingham S.M.
        • Mifune Y.
        • et al.
        Isolation and characterization of human anterior cruciate ligament-derived vascular stem cells.
        Stem Cells Dev. 2012; 21: 859-872
        • Anz A.W.
        • Branch E.A.
        • Rodriguez J.
        • et al.
        Viable stem cells are in the injury effusion fluid and arthroscopic byproducts from knee cruciate ligament surgery: An in vivo analysis.
        Arthroscopy. 2017; 33: 790-797
        • Morito T.
        • Muneta T.
        • Hara K.
        • et al.
        Synovial fluid-derived mesenchymal stem cells increase after intra-articular ligament injury in humans.
        Rheumatology. 2008; 47: 1137-1143
        • Jones E.A.
        • English A.
        • Henshaw K.
        • et al.
        Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis.
        Arthritis Rheum. 2004; 50: 817-827
        • Hatsushika D.
        • Muneta T.
        • Nakamura T.
        • et al.
        Repetitive allogeneic intraarticular injections of synovial mesenchymal stem cells promote meniscus regeneration in a porcine massive meniscus defect model.
        Osteoarthritis Cartilage. 2014; 22: 941-950
        • Murata Y.
        • Uchida S.
        • Utsunomiya H.
        • et al.
        Differentiation potential of synovial mesenchymal stem cells isolated from hip joints affected by femoroacetabular impingement syndrome versus osteoarthritis.
        Arthroscopy. 2020; 36: 2122-2133
        • Sakaguchi Y.
        • Sekiya I.
        • Yagishita K.
        • Muneta T.
        Comparison of human stem cells derived from various mesenchymal tissues: Superiority of synovium as a cell source.
        Arthritis Rheum. 2005; 52: 2521-2529
        • Cerza F.
        • Carnì S.
        • Carcangiu A.
        • et al.
        Comparison between hyaluronic acid and platelet-rich plasma, intra-articular infiltration in the treatment of gonarthrosis.
        Am J Sports Med. 2012; 40: 2822-2827
        • Patel S.
        • Dhillon M.S.
        • Aggarwal S.
        • Marwaha N.
        • Jain A.
        Treatment with platelet-rich plasma is more effective than placebo for knee osteoarthritis: A prospective, double-blind, randomized trial.
        Am J Sports Med. 2013; 41: 356-364
        • Kon E.
        • Mandelbaum B.
        • Buda R.
        • et al.
        Platelet-rich plasma intra-articular injection versus hyaluronic acid viscosupplementation as treatments for cartilage pathology: from early degeneration to osteoarthritis.
        Arthroscopy. 2011; 27: 1490-1501
        • DeLong J.M.
        • Beitzel K.
        • Mazzocca A.D.
        • Shepard D.
        • Roller B.L.
        • Hanypsiak B.T.
        Update on platelet-rich plasma.
        Curr Orthop Practice. 2011; 22: 514-523
        • Fitzpatrick J.
        • Bulsara M.K.
        • McCrory P.R.
        • Richardson M.D.
        • Zheng M.H.
        Analysis of platelet-rich plasma extraction: variations in platelet and blood components between 4 common commercial kits.
        Orthop J Sports Med. 2017; 5 (2325967116675272)
        • Hall M.P.
        • Band P.A.
        • Meislin R.J.
        • Jazrawi L.M.
        • Cardone D.A.
        Platelet-rich plasma: Current concepts and application in sports medicine.
        J Am Acad Orthop Surg. 2009; 17: 602-608
        • Boswell S.G.
        • Cole B.J.
        • Sundman E.A.
        • Karas V.
        • Fortier L.A.
        Platelet-rich plasma: A milieu of bioactive factors.
        Arthroscopy. 2012; 28: 429-439
        • Bonsignore M.R.
        • Morici G.
        • Riccioni R.
        • et al.
        Hemopoietic and angiogenetic progenitors in healthy athletes: different responses to endurance and maximal exercise.
        J Appl Physiol (1985). 2010; 109: 60-67
        • Chang E.
        • Paterno J.
        • Duscher D.
        • et al.
        Exercise induces stromal cell-derived factor-1alpha-mediated release of endothelial progenitor cells with increased vasculogenic function.
        Plast Reconstr Surg. 2015; 135: 340e-350e
        • Hernigou P.
        • Homma Y.
        • Lachaniette C.H.F.
        • et al.
        Benefits of small volume and small syringe for bone marrow aspirations of mesenchymal stem cells.
        Int Orthop. 2013; 37: 2279-2287
        • Hermida-Gómez T.
        • Fuentes-Boquete I.
        • Gimeno-Longas M.J.
        • Muiños-López E.
        • Díaz-Prado S.
        • Blanco F.J.
        Quantification of cells expressing mesenchymal stem cell markers in healthy and osteoarthritic synovial membranes.
        J Rheumatol. 2011; 38: 339-349
        • Ogawa M.
        • LaRue A.C.
        • Mehrotra M.
        Hematopoietic stem cells are pluripotent and not just “hematopoietic”.
        Blood Cells Mol Dis. 2013; 51: 3-8
        • Hung S.C.
        • Chen N.J.
        • Hsieh S.L.
        • Li H.
        • Ma H.L.
        • Lo W.H.
        Isolation and characterization of size-sieved stem cells from human bone marrow.
        Stem Cells. 2002; 20: 249-258
        • Prockop D.J.
        Marrow stromal cells as stem cells for nonhematopoietic tissues.
        Science. 1997; 276: 71-74
        • Friedenstein A.
        • Chailakhjan R.
        • Lalykina K.
        The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells.
        Cell Proliferation. 1970; 3: 393-403
        • Owen M.
        • Friedenstein A.
        Stromal stem cells: Marrow-derived osteogenic precursors.
        Ciba Found Symp. 1988; 136: 42-60
        • Caplan A.I.
        • Correa D.
        The MSC: An injury drugstore.
        Cell Stem Cell. 2011; 9: 11-15
        • Caplan A.I.
        New era of cell-based orthopedic therapies.
        Tissue Eng Part B Rev. 2009; 15: 195-200
        • Hofer H.R.
        • Tuan R.S.
        Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies.
        Stem Cell Res Ther. 2016; 7: 131
        • Kean T.J.
        • Lin P.
        • Caplan A.I.
        • Dennis J.E.
        MSCs: delivery routes and engraftment, cell-targeting strategies, and immune modulation.
        Stem Cells Int. 2013; 2013
        • Salazar-Noratto G.E.
        • Luo G.
        • Denoeud C.
        • et al.
        Concise review: Understanding and leveraging cell metabolism to enhance mesenchymal stem cell transplantation survival in tissue engineering and regenerative medicine applications.
        Stem Cells. 2020; 38: 22-33
        • Cesselli D.
        • Beltrami A.P.
        • Rigo S.
        • et al.
        Multipotent progenitor cells are present in human peripheral blood.
        Circ Res. 2009; 104: 1225-1234
        • Blau H.M.
        • Brazelton T.
        • Weimann J.
        The evolving concept of a stem cell: Entity or function?.
        Cell. 2001; 105: 829-841
        • Lawrence B.E.
        • Horton P.M.
        Progenitor cells: Biology, characterization and potential clinical applications.
        Nova Science Publishers, Inc, Hauppauge, NY2013
        • Moore K.A.
        • Lemischka I.R.
        Stem cells and their niches.
        Science. 2006; 311: 1880-1885
        • Murray I.R.
        • Chahla J.
        • Frank R.M.
        • et al.
        Rogue stem cell clinics.
        Bone Joint J. 2020; 102: 148-154
        • Murray I.R.
        • West C.C.
        • Hardy W.R.
        • et al.
        Natural history of mesenchymal stem cells, from vessel walls to culture vessels.
        Cell Mol Life Sci. 2014; 71: 1353-1374
        • Anz A.W.
        • Hackel J.G.
        • Nilssen E.C.
        • Andrews J.R.
        Application of biologics in the treatment of the rotator cuff, meniscus, cartilage, and osteoarthritis.
        J Am Acad Orthop Surg. 2014; 22: 68-79
        • LaPrade R.F.
        • Dragoo J.L.
        • Koh J.L.
        • Murray I.R.
        • Geeslin A.G.
        • Chu C.R.
        AAOS research symposium updates and consensus: Biologic treatment of orthopaedic injuries.
        J Am Acad Orthop Surg. 2016; 24: e62
        • De Bari C.
        • Dell'Accio F.
        • Tylzanowski P.
        • Luyten F.P.
        Multipotent mesenchymal stem cells from adult human synovial membrane.
        Arthritis Rheum. 2001; 44: 1928-1942
        • De Bari C.
        • Dell'Accio F.
        • Vanlauwe J.
        • et al.
        Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis.
        Arthritis Rheum. 2006; 54: 1209-1221
        • Zuk P.A.
        • Zhu M.
        • Ashjian P.
        • et al.
        Human adipose tissue is a source of multipotent stem cells.
        Mol Biol Cell. 2002; 13: 4279-4295
        • Horwitz E.
        • Le Blanc K.
        • Dominici M.
        • et al.
        Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement.
        Cytotherapy. 2005; 7: 393-395
        • Chirba M.A.
        • Sweetapple B.
        • Hannon C.P.
        • Anderson J.A.
        FDA regulation of adult stem cell therapies as used in sports medicine.
        J Knee Surg. 2015; 28: 55-62
        • Beitzel K.
        • McCarthy M.B.
        • Cote M.P.
        • et al.
        Comparison of mesenchymal stem cells (osteoprogenitors) harvested from proximal humerus and distal femur during arthroscopic surgery.
        Arthroscopy. 2013; 29: 301-308
        • Hernigou P.
        • Flouzat Lachaniette C.H.
        • Delambre J.
        • et al.
        Biologic augmentation of rotator cuff repair with mesenchymal stem cells during arthroscopy improves healing and prevents further tears: A case-controlled study.
        Int Orthop. 2014; 38: 1811-1818
        • Hernigou P.
        • Poignard A.
        • Beaujean F.
        • Rouard H.
        Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells.
        J Bone Joint Surg Am. 2005; 87: 1430-1437
        • Hernigou P.
        • Poignard A.
        • Zilber S.
        • Rouard H.
        Cell therapy of hip osteonecrosis with autologous bone marrow grafting.
        Indian J Orthop. 2009; 43: 40-45
        • Saw K.-Y.
        • Anz A.
        • Jee C.S.-Y.
        • et al.
        Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: A randomized controlled trial.
        Arthroscopy. 2013; 29: 684-694
        • Saw K.-Y.
        • Anz A.
        • Merican S.
        • et al.
        Articular cartilage regeneration with autologous peripheral blood progenitor cells and hyaluronic acid after arthroscopic subchondral drilling: A report of 5 cases with histology.
        Arthroscopy. 2011; 27: 493-506
        • Anz A.W.
        • Matuska A.
        • Edison J.L.
        • et al.
        Quantification and qualification of stem cells from blood after mobilization with filgrastim, and concentration using a PRP system [published online July 14, 2020]. Arthroscopy.