Advertisement

Aging Decreases the Ultimate Tensile Strength of Bone–Patellar Tendon–Bone Allografts

      Purpose

      The purpose of this study was to determine whether aging imparts a clinically significant effect on the (1) mechanism of graft failure and (2) structural, material, and viscoelastic properties of patellar tendon allografts by evaluating these properties in younger donors (≤30 years of age) and older donors (>50 years of age).

      Methods

      A total of 34 younger (≤30 years of age) and 34 older (>50 years of age) nonirradiated, whole bone-tendon-bone allografts were prepared for testing by isolating the central third of the patellar tendon using a double-bladed 10-mm width scalpel under a 10-N load to ensure uniformity of harvest. Bone blocks were potted in polymethylmethacrylate within custom molds. Tendon length and cross-sectional area were measured using an area micrometer. A mechanical loading system was used to precondition the grafts for 100 cycles with a load between 50 N and 250 N (1 Hz). A creep load (500 N) was then applied at a rate of 100 mm/min (10 minutes). Grafts were allowed to recover at 1 N (10 minutes), followed by pull-to-failure at a rate of 100% strain per second. Mechanisms of failure (midsubstance vs avulsion) were noted and the structural, material, and viscoelastic properties calculated and compared between groups.

      Results

      There were 33 (97%) midsubstance tears in the younger group and 28 (82%) in the older group (P = .034). Younger grafts showed greater ultimate load to failure (1,782 N [1,533, 2,032] vs 1,319 N [1,103, 1,533]) (P = .006) and ultimate tensile stress (37.4 MPa [32.4, 42.4] vs 27.5 MPa [22.9, 32.0]) (P = .006). There were no significant differences in displacement (P = .595), stiffness (P = .950), strain (P = .783), elastic modulus (P = .114), creep displacement (P = .881), and creep strain (P = .614).

      Conclusions

      This in vitro study suggests that aging weakens the bone-tendon junction and decreases the ultimate tensile strength of patellar tendon allografts. However, aging did not affect the displacement, strain, stiffness, elastic modulus, creep displacement, or creep strain of patellar tendon allografts.

      Clinical Relevance

      Surgeons should be aware that patellar tendon allografts from donors >50 years of age have a lower ultimate tensile stress than donors ≤30 years of age.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Maletis G.B.
        • Inacio M.C.
        • Funahashi T.T.
        Analysis of 16,192 anterior cruciate ligament reconstructions from a community-based registry.
        Am J Sports Med. 2013; 41: 2090-2098
        • Sun K.
        • Zhang J.
        • Wang Y.
        • et al.
        Arthroscopic reconstruction of the anterior cruciate ligament with hamstring tendon autograft and fresh-frozen allograft: A prospective, randomized controlled study.
        Am J Sports Med. 2011; 39: 1430-1438
        • Tian S.
        • Wang Y.
        • Wang B.
        • et al.
        Anatomic double-bundle anterior cruciate ligament reconstruction with a hamstring tendon autograft and fresh-frozen allograft: A prospective, randomized, and controlled study.
        Arthroscopy. 2016; 32: 2521-2531
        • Gifstad T.
        • Foss O.A.
        • Engebretsen L.
        • et al.
        Lower risk of revision with patellar tendon autografts compared with hamstring autografts: A registry study based on 45,998 primary ACL reconstructions in Scandinavia.
        Am J Sports Med. 2014; 42: 2319-2328
        • Hospodar S.J.
        • Miller M.D.
        Controversies in ACL reconstruction: Bone-patellar tendon-bone anterior cruciate ligament reconstruction remains the gold standard.
        Sports Med Arthrosc Rev. 2009; 17: 242-246
        • Kraeutler M.J.
        • Bravman J.T.
        • McCarty E.C.
        Bone-patellar tendon-bone autograft versus allograft in outcomes of anterior cruciate ligament reconstruction: A meta-analysis of 5182 patients.
        Am J Sports Med. 2013; 41: 2439-2448
        • Shelton W.R.
        • Fagan B.C.
        Autografts commonly used in anterior cruciate ligament reconstruction.
        J Am Acad Orthop Surg. 2011; 19: 259-264
        • Kaeding C.C.
        • Pedroza A.D.
        • Reinke E.K.
        • Huston L.J.
        • Consortium M.
        • Spindler K.P.
        Risk factors and predictors of subsequent ACL injury in either knee after ACL reconstruction: Prospective analysis of 2488 primary ACL reconstructions from the MOON cohort.
        Am J Sports Med. 2015; 43: 1583-1590
        • Maletis G.B.
        • Chen J.
        • Inacio M.C.S.
        • Love R.M.
        • Funahashi T.T.
        Increased risk of revision after anterior cruciate ligament reconstruction with bone-patellar tendon-bone allografts compared with autografts.
        Am J Sports Med. 2017; 45: 1333-1340
        • Mistry H.
        • Metcalfe A.
        • Colquitt J.
        • et al.
        Autograft or allograft for reconstruction of anterior cruciate ligament: A health economics perspective.
        Knee Surg Sports Traumatol Arthrosc. 2019; 27: 1782-1790
        • Butler D.L.
        • Grood E.S.
        • Noyes F.R.
        • et al.
        Mechanical properties of primate vascularized vs. nonvascularized patellar tendon grafts; changes over time.
        J Orthop Res. 1989; 7: 68-79
        • Clancy Jr., W.G.
        • Narechania R.G.
        • Rosenberg T.D.
        • Gmeiner J.G.
        • Wisnefske D.D.
        • Lange T.A.
        Anterior and posterior cruciate ligament reconstruction in rhesus monkeys.
        J Bone Joint Surg Am. 1981; 63: 1270-1284
        • Cooper D.E.
        • Deng X.H.
        • Burstein A.L.
        • Warren R.F.
        The strength of the central third patellar tendon graft: A biomechanical study.
        Am J Sports Med. 1993; 21: 818-823
        • Woo S.L.
        • Hollis J.M.
        • Adams D.J.
        • Lyon R.M.
        • Takai S.
        Tensile properties of the human femur-anterior cruciate ligament-tibia complex: The effects of specimen age and orientation.
        Am J Sports Med. 1991; 19: 217-225
        • Guo L.
        • Yang L.
        • Duan X.J.
        • et al.
        Anterior cruciate ligament reconstruction with bone-patellar tendon-bone graft: Comparison of autograft, fresh-frozen allograft, and gamma-irradiated allograft.
        Arthroscopy. 2012; 28: 211-217
        • Yanke A.B.
        • Bell R.
        • Lee A.
        • et al.
        The biomechanical effects of 1.0 to 1.2 Mrad of gamma irradiation on human bone-patellar tendon-bone allografts.
        Am J Sports Med. 2013; 41: 835-840
        • Blevins F.T.
        • Hecker A.T.
        • Bigler G.T.
        • Boland A.L.
        • Hayes W.C.
        The effects of donor age and strain rate on the biomechanical properties of bone-patellar tendon-bone allografts.
        Am J Sports Med. 1994; 22: 328-333
        • Flahiff C.M.
        • Brooks A.T.
        • Hollis J.M.
        • Vander Schilden J.L.
        • Nicholas R.W.
        Biomechanical analysis of patellar tendon allografts as a function of donor age.
        Am J Sports Med. 1995; 23: 354-358
        • Johnson G.A.
        • Tramaglini D.M.
        • Levine R.E.
        • Ohno K.
        • Choi N.Y.
        • Woo S.L.
        Tensile and viscoelastic properties of human patellar tendon.
        J Orthop Res. 1994; 12: 796-803
        • Wilson T.W.
        • Zafuta M.P.
        • Zobitz M.
        A biomechanical analysis of matched bone-patellar tendon-bone and double-looped semitendinosus and gracilis tendon grafts.
        Am J Sports Med. 1999; 27: 202-207
        • Hampton D.M.
        • Lamb J.
        • Klimkiewicz J.J.
        Effect of donor age on patellar tendon allograft ACL reconstruction.
        Orthopedics. 2012; 35: e1173-1176
        • Noyes F.R.
        • Butler D.L.
        • Grood E.S.
        • Zernicke R.F.
        • Hefzy M.S.
        Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions.
        J Bone Joint Surg Am. 1984; 66: 344-352
        • Yanke A.B.
        • Bell R.
        • Lee A.S.
        • Shewman E.
        • Wang V.M.
        • Bach Jr., B.R.
        Central-third bone-patellar tendon-bone allografts demonstrate superior biomechanical failure characteristics compared with hemi-patellar tendon grafts.
        Am J Sports Med. 2013; 41: 2521-2526
        • Curran A.R.
        • Adams D.J.
        • Gill J.L.
        • Steiner M.E.
        • Scheller A.D.
        The biomechanical effects of low-dose irradiation on bone-patellar tendon-bone allografts.
        Am J Sports Med. 2004; 32: 1131-1135
        • Jones D.B.
        • Huddleston P.M.
        • Zobitz M.E.
        • Stuart M.J.
        Mechanical properties of patellar tendon allografts subjected to chemical sterilization.
        Arthroscopy. 2007; 23: 400-404
        • Swank K.R.
        • Behn A.W.
        • Dragoo J.L.
        The effect of donor age on structural and mechanical properties of allograft tendons.
        Am J Sports Med. 2015; 43: 453-459
        • Bonifasi-Lista C.
        • Lake S.P.
        • Small M.S.
        • Weiss J.A.
        Viscoelastic properties of the human medial collateral ligament under longitudinal, transverse and shear loading.
        J Orthop Res. 2005; 23: 67-76
        • Lujan T.J.
        • Underwood C.J.
        • Jacobs N.T.
        • Weiss J.A.
        Contribution of glycosaminoglycans to viscoelastic tensile behavior of human ligament.
        J Appl Physiol (1985). 2009; 106: 423-431
        • Graf B.K.
        • Vanderby Jr., R.
        • Ulm M.J.
        • Rogalski R.P.
        • Thielke R.J.
        Effect of preconditioning on the viscoelastic response of primate patellar tendon.
        Arthroscopy. 1994; 10: 90-96
        • Rasmussen T.J.
        • Feder S.M.
        • Butler D.L.
        • Noyes F.R.
        The effects of 4 Mrad of gamma irradiation on the initial mechanical properties of bone-patellar tendon-bone grafts.
        Arthroscopy. 1994; 10: 188-197
        • Lansdown D.A.
        • Riff A.J.
        • Meadows M.
        • Yanke A.B.
        • Bach Jr., B.R.
        What factors influence the biomechanical properties of allograft tissue for ACL reconstruction? A systematic review.
        Clin Orthop Relat Res. 2017; 475: 2412-2426
        • Cury D.P.
        • Dias F.J.
        • Miglino M.A.
        • Watanabe I.S.
        Structural and ultrastructural characteristics of bone-tendon junction of the calcaneal tendon of adult and elderly Wistar rats.
        PLoS One. 2016; 11e0153568
        • Eriksen H.A.
        • Pajala A.
        • Leppilahti J.
        • Risteli J.
        Increased content of type III collagen at the rupture site of human Achilles tendon.
        J Orthop Res. 2002; 20: 1352-1357
        • Maffulli N.
        • Ewen S.W.
        • Waterston S.W.
        • Reaper J.
        • Barrass V.
        Tenocytes from ruptured and tendinopathic Achilles tendons produce greater quantities of type III collagen than tenocytes from normal Achilles tendons: An in vitro model of human tendon healing.
        Am J Sports Med. 2000; 28: 499-505
        • McKinney B.
        • Cherney S.
        • Penna J.
        Intra-articular knee injuries in patients with knee extensor mechanism ruptures.
        Knee Surg Sports Traumatol Arthrosc. 2008; 16: 633-638
        • Capogna B.
        • Strauss E.
        • Konda S.
        • Dayan A.
        • Alaia M.
        Distal patellar tendon avulsion in association with high-energy knee trauma: A case series and review of the literature.
        Knee. 2017; 24: 468-476
        • Toutoungi D.E.
        • Lu T.W.
        • Leardini A.
        • Catani F.
        • O'Connor J.J.
        Cruciate ligament forces in the human knee during rehabilitation exercises.
        Clin Biomech (Bristol, Avon). 2000; 15: 176-187
        • Nagura T.
        • Matsumoto H.
        • Kiriyama Y.
        • Chaudhari A.
        • Andriacchi T.P.
        Tibiofemoral joint contact force in deep knee flexion and its consideration in knee osteoarthritis and joint replacement.
        J Appl Biomech. 2006; 22: 305-313
        • Morrison J.B.
        The mechanics of the knee joint in relation to normal walking.
        J Biomech. 1970; 3: 51-61
        • Shin C.S.
        • Chaudhari A.M.
        • Andriacchi T.P.
        The influence of deceleration forces on ACL strain during single-leg landing: A simulation study.
        J Biomech. 2007; 40: 1145-1152
        • Scheffler S.U.
        • Schmidt T.
        • Gangey I.
        • Dustmann M.
        • Unterhauser F.
        • Weiler A.
        Fresh-frozen free-tendon allografts versus autografts in anterior cruciate ligament reconstruction: Delayed remodeling and inferior mechanical function during long-term healing in sheep.
        Arthroscopy. 2008; 24: 448-458
        • Paterno M.V.
        • Rauh M.J.
        • Schmitt L.C.
        • Ford K.R.
        • Hewett T.E.
        Incidence of second ACL injuries 2 years after primary ACL reconstruction and return to sport.
        Am J Sports Med. 2014; 42: 1567-1573
        • Rougraff B.
        • Shelbourne K.D.
        • Gerth P.K.
        • Warner J.
        Arthroscopic and histologic analysis of human patellar tendon autografts used for anterior cruciate ligament reconstruction.
        Am J Sports Med. 1993; 21: 277-284
        • Tanaka Y.
        • Yonetani Y.
        • Shiozaki Y.
        • et al.
        Retear of anterior cruciate ligament grafts in female basketball players: A case series.
        Sports Med Arthrosc Rehabil Ther Technol. 2010; 2: 7
        • Carroll C.C.
        • Dickinson J.M.
        • Haus J.M.
        • et al.
        Influence of aging on the in vivo properties of human patellar tendon.
        J Appl Physiol (1985). 2008; 105: 1907-1915
        • Couppe C.
        • Hansen P.
        • Kongsgaard M.
        • et al.
        Mechanical properties and collagen cross-linking of the patellar tendon in old and young men.
        J Appl Physiol (1985). 2009; 107: 880-886