Advertisement

Anatomical Triple Bundle Anterior Cruciate Ligament Reconstructions With Hamstring Tendon Autografts: Tunnel Locations and 2-Year Clinical Outcomes

      Purpose

      To anatomically clarify the location of the tunnel apertures created using the bony landmark strategy and to elucidate clinical outcomes after anatomic triple-bundle (ATB) anterior cruciate ligament (ACL) reconstruction.

      Methods

      Thirty-two patients with unilateral ACL injury who had consented to undergo computed tomography (CT) at 3 weeks, as well as 2-year follow-up evaluation, were enrolled. At the time of surgery, remnant tissues were thoroughly cleared to create 2 femoral and 3 tibial tunnels inside the ACL attachment areas bordered by the bony landmarks. Two double-looped semitendinosus tendon autografts were prepared and fixed on the femur with two EndoButton-CLs and secured to the tibia with pullout sutures and plates with 10-20N of tension. The location of the tunnel aperture areas was assessed using 3-dimensional CT images, and 2-year postoperative clinical outcomes were evaluated.

      Results

      The CT evaluation showed 100% of the femoral tunnel aperture area and at least 79% of the tibial tunnel aperture area were located inside the anatomic attachment areas. Thirty patients were available for clinical evaluation. The International Knee Documentation Committee subjective assessment showed all of the patients were classified as “normal” or “nearly normal.” Lachman and pivot-shift tests were negative in 100% and 93%, respectively. The mean side-to-side difference of anterior laxity at the maximum manual force with a KT-1000 Knee Arthrometer was 0.7 ± 0.7 mm, ranging from 0 to 2 mm.

      Conclusion

      In ATB ACL reconstructions with hamstring tendon grafts, the tunnels can be created in proper locations using the arthroscopically-identifiable bony landmarks. Moreover, ATB ACL reconstruction with hamstring tendon grafts via the proper tunnels result in consistently satisfactory clinical outcomes.

      Level of Evidence

      Level IV, case series.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ahn J.H.
        • Kang H.W.
        • Choi K.J.
        Outcomes after double bundle anterior cruciate ligament reconstruction.
        Arthroscopy. 2018; 34: 220-230
        • Bedi A.
        • Maak T.
        • Musahl V.
        • et al.
        Effect of tibial tunnel position on stability of the knee after anterior cruciate ligament reconstruction: is the tibial tunnel position most important?.
        Am J Sports Med. 2011; 39: 366-373
        • Hatayama K.
        • Terauchi M.
        • Saito K.
        • Higuchi H.
        • Yanagisawa S.
        • Takagishi K.
        The importance of tibial tunnel placement in anatomic double-bundle anterior cruciate ligament reconstruction.
        Arthroscopy. 2013; 29: 1072-1078
        • Sadoghi P.
        • Kröpfl A.
        • Jansson V.
        • Müller P.E.
        • Pietschmann M.F.
        • Fischmeister M.F.
        Impact of tibial and femoral tunnel position on clinical results after anterior cruciate ligament reconstruction.
        Arthroscopy. 2011; 27: 355-364
        • Shino K.
        • Nakata K.
        • Nakamura N.
        Anatomic anterior cruciate ligament reconstruction using two double-looped hamstring tendon grafts via twin femoral and triple tibial tunnels.
        Oper Tech Orthop. 2005; 15: 130-134
        • Otsubo H.
        • Akatsuka Y.
        • Takashima H.
        • et al.
        MRI depiction and 3D visualization of three anterior cruciate ligament bundles.
        Clin Anat. 2017; 30: 276-283
        • Otsubo H.
        • Shino K.
        • Suzuki D.
        • et al.
        The arrangement and the attachment areas of three ACL bundles.
        Knee Surg Sports Traumatol Arthrosc. 2012; 20: 127-134
        • Suzuki D.
        • Otsubo H.
        • Watanabe T.
        • et al.
        Ultrastructure of the three anterior cruciate ligament bundles.
        Clin Anat. 2015; 28: 910-916
        • Fujie H.
        • Otsubo H.
        • Fukano S.
        • et al.
        Mechanical functions of the three bundles consisting of the human anterior cruciate ligament.
        Knee Surg Sports Traumatol Arthrosc. 2011; 19: S47-S53
        • Iwahashi T.
        • Shino K.
        • Nakata K.
        • et al.
        Direct anterior cruciate ligament insertion to the femur assessed by histology and 3-dimensional volume-rendered computed tomography.
        Arthroscopy. 2010; 26: S13-S20
        • Ito Y.
        • Deie M.
        • Adachi N.
        • et al.
        A prospective study of 3-day versus 2-week immobilization period after anterior cruciate ligament reconstruction.
        Knee. 2007; 14: 34-38
        • Suzuki T.
        • Shino K.
        • Yamakawa S.
        • et al.
        A biomechanical comparison of single-, double-, and triple-bundle anterior cruciate ligament reconstructions using a hamstring tendon graft.
        Arthroscopy. 2019; 35: 896-905
        • Mae T.
        • Shino K.
        • Matsumoto N.
        • Yoneda K.
        • Yoshikawa H.
        • Nakata K.
        Immediate postoperative anterior knee stability: Double- versus triple-bundle anterior cruciate ligament reconstructions.
        Arthroscopy. 2013; 29: 213-219
        • Das A.
        • Yadav C.S.
        • Gamanagatti S.
        • Pandey R.M.
        • Mittal R.
        Arthroscopic and 3D CT scan evaluation of femoral footprint of the anterior cruciate ligament in chronic ACL deficient knees.
        J Knee Surg. 2019; 32: 584-588
        • Ferretti M.
        • Ekdahl M.
        • Shen W.
        • Fu F.H.
        Osseous landmarks of the femoral attachment of the anterior cruciate ligament: an anatomic study.
        Arthroscopy. 2007; 23: 1218-1225
        • Hutchinson M.R.
        • Ash S.A.
        Resident’s ridge: assessing the cortical thickness of the lateral wall and roof of the intercondylar notch.
        Arthroscopy. 2003; 19: 931-935
        • Kato Y.
        • Ingham S.J.
        • Maeyama A.
        • et al.
        Biomechanics of the human triple-bundle anterior cruciate ligament.
        Arthroscopy. 2012; 28: 247-254
        • Purnell M.L.
        • Larson A.I.
        • Clancy W.
        Anterior cruciate ligament insertions on the tibia and femur and their relationships to critical bony landmarks using high-resolution volume-rendering computed tomography.
        Am J Sports Med. 2008; 36: 2083-2090
        • Berg E.E.
        Parsons’ knob (tuberculum intercondylare tertium). A guide to tibial anterior cruciate ligament insertion.
        Clin Orthop Relat Res. 1993; 292: 229-331
        • Kusano M.
        • Yonetani Y.
        • Mae T.
        • Nakata K.
        • Yoshikawa H.
        • Shino K.
        Tibial insertions of the anterior cruciate ligament and the anterior horn of the lateral meniscus: A histological and computed tomographic study.
        Knee. 2017; 24: 782-791
        • Oka S.
        • Schuhmacher P.
        • Brehmer A.
        • Traut U.
        • Kirsch J.
        • Siebold R.
        Histological analysis of the tibial anterior cruciate ligament insertion.
        Knee Surg Sports Traumatol Arthrosc. 2016; 24: 747-753
        • Siebold R.
        • Schuhmacher P.
        • Fernandez F.
        • et al.
        Flat midsubstance of the anterior cruciate ligament with tibial “C"-shaped insertion site.
        Knee Surg Sports Traumatol Arthrosc. 2015; 23: 3136-3142
        • Tensho K.
        • Shimodaira H.
        • Aoki T.
        • et al.
        Bony landmarks of the anterior cruciate ligament tibial footprint: a detailed analysis comparing 3-dimensional computed tomography images to visual and histological evaluations.
        Am J Sports Med. 2014; 42: 1433-1440
        • Tachibana Y.
        • Shino K.
        • Mae T.
        • Iuchi R.
        • Take Y.
        • Nakagawa S.
        Anatomical rectangular tunnels identified with the arthroscopic landmarks result in excellent outcomes in ACL reconstruction with a BTB graft.
        Knee Surg Sports Traumatol Arthrosc. 2019; 27: 2680-2690
        • Shino K.
        • Mae T.
        • Tachibana Y.
        Anatomic ACL reconstruction: rectangular tunnel/bone-patellar tendon-bone or triple-bundle/semitendinosus tendon grafting.
        J Orthop Sci. 2015; 20: 457-468
        • Shino K.
        • Suzuki T.
        • Iwahashi T.
        • et al.
        The resident’s ridge as an arthroscopic landmark for anatomical femoral tunnel drilling in ACL reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2010; 18: 1164-1168
        • Sasaki N.
        • Ishibashi Y.
        • Tsuda E.
        • et al.
        The femoral insertion of the anterior cruciate ligament: Discrepancy between macroscopic and histological observations.
        Arthroscopy. 2012; 28: 1135-1146
        • Hamada M.
        • Shino K.
        • Mitsuoka T.
        • Abe N.
        • Horibe S.
        Cross-sectional area measurement of the semitendinosus tendon for anterior cruciate ligament reconstruction.
        Arthroscopy. 1998; 14: 696-701
        • Kinugasa K.
        • Hamada M.
        • Yoneda K.
        • Matsuo T.
        • Mae T.
        • Shino K.
        Cross-sectional area of hamstring tendon autograft after anatomic triple-bundle ACL reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2017; 25: 1219-1226
        • Bernard M.
        • Hertel P.
        • Hornung H.
        • Cierpinski T.
        Femoral insertion of the ACL. Radiographic quadrant method.
        Am J Knee Surg. 1997; 10: 14-21
        • Tachibana Y.
        • Mae T.
        • Shino K.
        • et al.
        Morphological changes in femoral tunnels after anatomic anterior cruciate ligament reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2015; 23: 3591-3600
        • Tsuda E.
        • Ishibashi Y.
        • Fukuda A.
        • Yamamoto Y.
        • Tsukada H.
        • Ono S.
        Tunnel position and relationship to postoperative knee laxity after double-bundle anterior cruciate ligament reconstruction with a transtibial technique.
        Am J Sports Med. 2010; 38: 698-706
        • Tsukada H.
        • Ishibashi Y.
        • Tsuda E.
        • Fukuda A.
        • Toh S.
        Anatomical analysis of the anterior cruciate ligament femoral and tibial footprints.
        J Orthop Sci. 2008; 13: 122-129
        • Parkinson B.
        • Robb C.
        • Thomas M.
        • Thompson P.
        • Spalding T.
        Factors that predict failure in anatomic single-bundle anterior cruciate ligament reconstruction.
        Am J Sports Med. 2017; 45: 1529-1536
        • Take Y.
        • Shino K.
        • Mae T.
        • et al.
        Early structural results after anatomic triple bundle anterior cruciate ligament reconstruction validated by tunnel location, graft orientation, and static anteroposterior tibia-femur relationship.
        Arthroscopy. 2018; 34: 2656-2665
        • Rosenberg T.D.
        • Paulos L.E.
        • Parker R.D.
        • Coward D.B.
        • Scott S.M.
        The forty-five-degree posteroanterior flexion weightbearing radiograph of the knee.
        J Bone Joint Surg Am. 1988; 70: 1479-1483
        • Harris J.D.
        • Brand J.C.
        • Cote M.P.
        • Faucett S.C.
        • Dhawan A.
        Research pearls: The significance of statistics and perils of pooling. Part 1: Clinical versus statistical significance.
        Arthroscopy. 2017; 33: 1102-1112
        • Ohori T.
        • Mae T.
        • Shino K.
        • et al.
        Morphological changes in tibial tunnels after anatomic anterior cruciate ligament reconstruction with hamstring tendon graft.
        J Exp Orthop. 2017; 4: 30
        • Shino K.
        • Horibe S.
        • Hamada M.
        • et al.
        Allograft anterior cruciate ligament reconstruction.
        Tech Knee Surg. 2002; 1: 78-85
        • Mae T.
        • Shino K.
        • Iuchi R.
        • et al.
        Biomechanical characteristics of the anatomic rectangular tunnel anterior cruciate ligament reconstruction with a bone-patellar tendon-bone graft.
        J Orthop Sci. 2017; 22: 886-891
        • Iwahashi T.
        • Shino K.
        • Nakata K.
        • et al.
        Assessment of the ‘‘functional length’’ of the three bundles of the anterior cruciate ligament.
        Knee Surg Sports Traumatol Arthrosc. 2008; 16: 167-174
        • Tajima T.
        • Chosa E.
        • Kawahara K.
        • Yamaguchi N.
        Prospective comparisons of femoral tunnel enlargement with 3 different postoperative immobilization periods after double-bundle anterior cruciate ligament reconstruction with hamstring grafts.
        Arthroscopy. 2015; 31: 651-658
        • Brophy R.H.
        • Kovacevic D.
        • Imhauser C.W.
        • et al.
        Effect of short-duration low-magnitude cyclic loading versus immobilization on tendon-bone healing after ACL reconstruction in a rat model.
        J Bone Joint Surg Am. 2011; 93: 381-393
        • Camp C.L.
        • Lebaschi A.
        • Cong G.T.
        • et al.
        Timing of postoperative mechanical loading affects healing following anterior cruciate ligament reconstruction: Analysis in a murine model.
        J Bone Joint Surg Am. 2017; 99: 1382-1391
        • Matsuo T.
        • Mae T.
        • Shino K.
        • et al.
        Tibiofemoral relationship following anatomic triple-bundle anterior cruciate ligament reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2014; 22: 2128-2135