Advertisement

The Graft Insertion Length in the Femoral Tunnel During Anterior Cruciate Ligament Reconstruction With Suspensory Fixation and Tibialis Anterior Allograft Does Not Affect Surgical Outcomes but Is Negatively Correlated With Tunnel Widening

  • Hyun-Soo Moon
    Affiliations
    Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea

    Department of Orthopedic Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
    Search for articles by this author
  • Chong-Hyuk Choi
    Affiliations
    Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea

    Department of Orthopedic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
    Search for articles by this author
  • Je-Hyun Yoo
    Affiliations
    Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea

    Department of Orthopedic Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
    Search for articles by this author
  • Min Jung
    Affiliations
    Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea

    Department of Orthopedic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
    Search for articles by this author
  • Tae-Ho Lee
    Affiliations
    Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea

    Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
    Search for articles by this author
  • Ki-Hong Choi
    Affiliations
    Department of Orthopedic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
    Search for articles by this author
  • Sung-Hwan Kim
    Correspondence
    Address correspondence to Sung-Hwan Kim, M.D., Ph.D., Department of Orthopedic Surgery, Yonsei University College of Medicine, Gangnam Severance Hospital, 20 Eonju-ro 63-gil, Gangnam-gu, Seoul 06229, Republic of Korea.
    Affiliations
    Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea

    Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
    Search for articles by this author

      Purpose

      To investigate the surgical outcomes of anterior cruciate ligament (ACL) reconstruction using a low-dose irradiated tibialis anterior allograft with a fixed-loop cortical suspension device for the femur based on the graft insertion length (GIL) in the femoral tunnel.

      Methods

      Between January 2010 and January 2018, the medical records of consecutive patients who underwent arthroscopic ACL reconstruction with a tibialis anterior allograft fixed with the EndoButton CL for the femur and who had at least 2 years of follow-up were retrospectively evaluated. Patients were classified into 3 groups based on the GIL in the femoral tunnel (group 1, GIL < 15 mm; group 2, GIL of 15-20 mm; and group 3, GIL > 20 mm), and their functional scores, knee laxity, and radiographic parameters were evaluated.

      Results

      A total of 91 patients were analyzed. There were no statistically significant differences in the functional scores and knee laxity between the 3 groups at 2 years postoperatively. However, significant differences were observed in tunnel widening at 1 year postoperatively in the femur (P = .045 for absolute value and P = .004 for relative value) and the tibia (P = .014 for absolute value and P = .012 for relative value), revealing that both the femoral and tibial tunnels widened as the GIL decreased. Additional linear regression analyses were performed to identify whether the GIL independently affects tunnel widening. Consequently, the femoral tunnel depth, tunnel diameter, and GIL were found to independently influence femoral tunnel widening (P = .008, P = .019, and P < .001, respectively), whereas the tunnel diameter and GIL affected tibial tunnel widening (P < .001 and P = .004, respectively).

      Conclusions

      The GIL in the femoral tunnel during ACL reconstruction using a tibialis anterior allograft with a fixed-loop cortical suspension device for the femur has no significant association with the postoperative functional outcomes and knee laxity, but it has a negative correlation with tunnel widening in the femur and the tibia.

      Level of Evidence

      Level III, retrospective cohort study.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Tibor L.
        • Chan P.H.
        • Funahashi T.T.
        • Wyatt R.
        • Maletis G.B.
        • Inacio M.C.
        Surgical technique trends in primary ACL reconstruction from 2007 to 2014.
        J Bone Joint Surg Am. 2016; 98: 1079-1089
        • Kim H.S.
        • Seon J.K.
        • Jo A.R.
        Current trends in anterior cruciate ligament reconstruction.
        Knee Surg Relat Res. 2013; 25: 165-173
        • Wang Y.
        • Lei G.
        • Zeng C.
        • et al.
        Comparative risk-benefit profiles of individual devices for graft fixation in anterior cruciate ligament reconstruction: A systematic review and network meta-analysis.
        Arthroscopy. 2020; 36: 1953-1972
        • Persson A.
        • Kjellsen A.B.
        • Fjeldsgaard K.
        • Engebretsen L.
        • Espehaug B.
        • Fevang J.M.
        Registry data highlight increased revision rates for Endobutton/Biosure HA in ACL reconstruction with hamstring tendon autograft: A nationwide cohort study from the Norwegian Knee Ligament Registry, 2004-2013.
        Am J Sports Med. 2015; 43: 2182-2188
        • Eysturoy N.H.
        • Nissen K.A.
        • Nielsen T.
        • Lind M.
        The influence of graft fixation methods on revision rates after primary anterior cruciate ligament reconstruction.
        Am J Sports Med. 2018; 46: 524-530
        • Choi N.H.
        • Oh J.S.
        • Jung S.H.
        • Victoroff B.N.
        Correlation between Endobutton loop length and tunnel widening after hamstring anterior cruciate ligament reconstruction.
        Am J Sports Med. 2013; 41: 101-106
        • Kamelger F.S.
        • Onder U.
        • Schmoelz W.
        • Tecklenburg K.
        • Arora R.
        • Fink C.
        Suspensory fixation of grafts in anterior cruciate ligament reconstruction: A biomechanical comparison of 3 implants.
        Arthroscopy. 2009; 25: 767-776
        • Flanigan D.C.
        • Kanneganti P.
        • Quinn D.P.
        • Litsky A.S.
        Comparison of ACL fixation devices using cadaveric grafts.
        J Knee Surg. 2011; 24: 175-180
        • Petre B.M.
        • Smith S.D.
        • Jansson K.S.
        • et al.
        Femoral cortical suspension devices for soft tissue anterior cruciate ligament reconstruction: A comparative biomechanical study.
        Am J Sports Med. 2013; 41: 416-422
        • Rodriguez C.
        • Garcia T.E.
        • Montes S.
        • Rodriguez L.
        • Maestro A.
        In vitro comparison between cortical and cortico-cancellous femoral suspension devices for anterior cruciate ligament reconstruction: Implications for mobilization.
        Knee Surg Sports Traumatol Arthrosc. 2015; 23: 2324-2329
        • Barrow A.E.
        • Pilia M.
        • Guda T.
        • Kadrmas W.R.
        • Burns T.C.
        Femoral suspension devices for anterior cruciate ligament reconstruction: Do adjustable loops lengthen?.
        Am J Sports Med. 2014; 42: 343-349
        • Johnson J.S.
        • Smith S.D.
        • LaPrade C.M.
        • Turnbull T.L.
        • LaPrade R.F.
        • Wijdicks C.A.
        A biomechanical comparison of femoral cortical suspension devices for soft tissue anterior cruciate ligament reconstruction under high loads.
        Am J Sports Med. 2015; 43: 154-160
        • Nye D.D.
        • Mitchell W.R.
        • Liu W.
        • Ostrander R.V.
        Biomechanical comparison of fixed-loop and adjustable-loop cortical suspensory devices for metaphyseal femoral-sided soft tissue graft fixation in anatomic anterior cruciate ligament reconstruction using a porcine model.
        Arthroscopy. 2017; 33: 1225-1232.e1
        • Yamazaki S.
        • Yasuda K.
        • Tomita F.
        • Minami A.
        • Tohyama H.
        The effect of intraosseous graft length on tendon-bone healing in anterior cruciate ligament reconstruction using flexor tendon.
        Knee Surg Sports Traumatol Arthrosc. 2006; 14: 1086-1093
        • Zantop T.
        • Ferretti M.
        • Bell K.M.
        • Brucker P.U.
        • Gilbertson L.
        • Fu F.H.
        Effect of tunnel-graft length on the biomechanics of anterior cruciate ligament-reconstructed knees: Intra-articular study in a goat model.
        Am J Sports Med. 2008; 36: 2158-2166
        • Qi L.
        • Chang C.
        • Jian L.
        • Xin T.
        • Gang Z.
        Effect of varying the length of soft-tissue grafts in the tibial tunnel in a canine anterior cruciate ligament reconstruction model.
        Arthroscopy. 2011; 27: 825-833
        • Yang D.L.
        • Cheon S.H.
        • Oh C.W.
        • Kyung H.S.
        A comparison of the fixation strengths provided by different intraosseous tendon lengths during anterior cruciate ligament reconstruction: A biomechanical study in a porcine tibial model.
        Clin Orthop Surg. 2014; 6: 173-179
        • Guglielmetti L.G.B.
        • Shimba L.G.
        • do Santos L.C.
        • et al.
        The influence of femoral tunnel length on graft rupture after anterior cruciate ligament reconstruction.
        J Orthop Traumatol. 2017; 18: 243-250
        • Mariscalco M.W.
        • Magnussen R.A.
        • Mitchell J.
        • et al.
        How much hamstring graft needs to be in the femoral tunnel? A MOON cohort study.
        Eur Orthop Traumatol. 2015; 6: 9-13
        • Budny J.
        • Fox J.
        • Rauh M.
        • Fineberg M.
        Emerging trends in anterior cruciate ligament reconstruction.
        J Knee Surg. 2017; 30: 63-69
        • Duchman K.R.
        • Lynch T.S.
        • Spindler K.P.
        Graft selection in anterior cruciate ligament surgery: Who gets what and why?.
        Clin Sports Med. 2017; 36: 25-33
        • Palmer J.E.
        • Russell J.P.
        • Grieshober J.
        • et al.
        A Biomechanical comparison of allograft tendons for ligament reconstruction.
        Am J Sports Med. 2017; 45: 701-707
        • Pilia M.
        • Murray M.
        • Guda T.
        • Heckman M.
        • Appleford M.
        Pretensioning of soft tissue grafts in anterior cruciate ligament reconstruction.
        Orthopedics. 2015; 38: e582-e587
        • Kim S.J.
        • Kim H.J.
        High portal: Practical philosophy for positioning portals in knee arthroscopy.
        Arthroscopy. 2001; 17: 333-337
        • Kim S.H.
        • Kim S.J.
        • Choi C.H.
        • Kim D.
        • Jung M.
        Optimal condition to create femoral tunnel considering combined influence of knee flexion and transverse drill angle in anatomical single-bundle ACL reconstruction using medial portal technique: 3D simulation study.
        Biomed Res Int. 2018; 2018: 2643247
        • Briggs K.K.
        • Kocher M.S.
        • Rodkey W.G.
        • Steadman J.R.
        Reliability, validity, and responsiveness of the Lysholm knee score and Tegner activity scale for patients with meniscal injury of the knee.
        J Bone Joint Surg Am. 2006; 88: 698-705
        • Flandry F.
        • Hunt J.P.
        • Terry G.C.
        • Hughston J.C.
        Analysis of subjective knee complaints using visual analog scales.
        Am J Sports Med. 1991; 19: 112-118
        • Irrgang J.J.
        • Anderson A.F.
        • Boland A.L.
        • et al.
        Responsiveness of the International Knee Documentation Committee subjective knee form.
        Am J Sports Med. 2006; 34: 1567-1573
        • Myrer J.W.
        • Schulthies S.S.
        • Fellingham G.W.
        Relative and absolute reliability of the KT-2000 arthrometer for uninjured knees. Testing at 67, 89, 134, and 178 N and manual maximum forces.
        Am J Sports Med. 1996; 24: 104-108
        • Hefti F.
        • Müller W.
        • Jakob R.P.
        • Stäubli H.U.
        Evaluation of knee ligament injuries with the IKDC form.
        Knee Surg Sports Traumatol Arthrosc. 1993; 1: 226-234
        • Iseki Y.
        • Takahashi T.
        • Takeda H.
        • et al.
        Defining the load bearing axis of the lower extremity obtained from anterior-posterior digital radiographs of the whole limb in stance.
        Osteoarthritis Cartilage. 2009; 17: 586-591
        • Moon H.S.
        • Choi C.H.
        • Jung M.
        • Lee D.Y.
        • Eum K.S.
        • Kim S.H.
        Medial meniscal posterior horn tears are associated with increased posterior tibial slope: A case-control study.
        Am J Sports Med. 2020; (363546520917420)
        • Kellgren J.H.
        • Lawrence J.S.
        Radiological assessment of osteo-arthrosis.
        Ann Rheum Dis. 1957; 16: 494-502
        • Moon H.S.
        • Choi C.H.
        • Jung M.
        • Lee D.Y.
        • Chang H.
        • Kim S.H.
        Do rotation and measurement methods affect reliability of anterior cruciate ligament tunnel position on 3D reconstructed computed tomography?.
        Orthop J Sports Med. 2019; 7 (2325967119885882)
        • Firat A.
        • Catma F.
        • Tunc B.
        • et al.
        The attic of the femoral tunnel in anterior cruciate ligament reconstruction: A comparison of outcomes of two suspensory femoral fixation systems.
        Knee Surg Sports Traumatol Arthrosc. 2014; 22: 1097-1105
        • Lee Y.S.
        • Lee S.W.
        • Nam S.W.
        • et al.
        Analysis of tunnel widening after double-bundle ACL reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2012; 20: 2243-2250
        • Hoher J.
        • Moller H.D.
        • Fu F.H.
        Bone tunnel enlargement after anterior cruciate ligament reconstruction: Fact or fiction?.
        Knee Surg Sports Traumatol Arthrosc. 1998; 6: 231-240
        • Wilson T.C.
        • Kantaras A.
        • Atay A.
        • Johnson D.L.
        Tunnel enlargement after anterior cruciate ligament surgery.
        Am J Sports Med. 2004; 32: 543-549
        • Yue L.
        • DeFroda S.F.
        • Sullivan K.
        • Garcia D.
        • Owens B.D.
        Mechanisms of bone tunnel enlargement following anterior cruciate ligament reconstruction.
        JBJS Rev. 2020; 8e0120
        • Chen L.
        • Wu Y.
        • Lin G.
        • et al.
        Graft bending angle affects allograft tendon maturity early after anterior cruciate ligament reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2018; 26: 3048-3054
        • Sauer S.
        • Lind M.
        Bone tunnel enlargement after ACL reconstruction with hamstring autograft is dependent on original bone tunnel diameter.
        Surg J (N Y). 2017; 3: e96-e100
        • Chen H.
        • Tie K.
        • Qi Y.
        • Li B.
        • Chen B.
        • Chen L.
        Anteromedial versus transtibial technique in single-bundle autologous hamstring ACL reconstruction: A meta-analysis of prospective randomized controlled trials.
        J Orthop Surg Res. 2017; 12: 167
        • Herbort M.
        • Lenschow S.
        • Fu F.H.
        • Petersen W.
        • Zantop T.
        ACL mismatch reconstructions: Influence of different tunnel placement strategies in single-bundle ACL reconstructions on the knee kinematics.
        Knee Surg Sports Traumatol Arthrosc. 2010; 18: 1551-1558
        • Osti M.
        • Krawinkel A.
        • Ostermann M.
        • Hoffelner T.
        • Benedetto K.P.
        Femoral and tibial graft tunnel parameters after transtibial, anteromedial portal, and outside-in single-bundle anterior cruciate ligament reconstruction.
        Am J Sports Med. 2015; 43: 2250-2258
        • Ro K.H.
        • Kim H.J.
        • Lee D.H.
        The transportal technique shows better clinical results than the transtibial techniques for single-bundle anterior cruciate ligament reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2018; 26: 2371-2380
        • Hensler D.
        • Working Z.M.
        • Illingworth K.D.
        • Tashman S.
        • Fu F.H.
        Correlation between femoral tunnel length and tunnel position in ACL reconstruction.
        J Bone Joint Surg Am. 2013; 95: 2029-2034
        • Rodeo S.A.
        • Kawamura S.
        • Kim H.J.
        • Dynybil C.
        • Ying L.
        Tendon healing in a bone tunnel differs at the tunnel entrance versus the tunnel exit: An effect of graft-tunnel motion?.
        Am J Sports Med. 2006; 34: 1790-1800
        • Hoher J.
        • Livesay G.A.
        • Ma C.B.
        • Withrow J.D.
        • Fu F.H.
        • Woo S.L.
        Hamstring graft motion in the femoral bone tunnel when using titanium button/polyester tape fixation.
        Knee Surg Sports Traumatol Arthrosc. 1999; 7: 215-219
        • Baumfeld J.A.
        • Diduch D.R.
        • Rubino L.J.
        • et al.
        Tunnel widening following anterior cruciate ligament reconstruction using hamstring autograft: A comparison between double cross-pin and suspensory graft fixation.
        Knee Surg Sports Traumatol Arthrosc. 2008; 16: 1108-1113
        • L'Insalata J.C.
        • Klatt B.
        • Fu F.H.
        • Harner C.D.
        Tunnel expansion following anterior cruciate ligament reconstruction: A comparison of hamstring and patellar tendon autografts.
        Knee Surg Sports Traumatol Arthrosc. 1997; 5: 234-238
        • Sabat D.
        • Kundu K.
        • Arora S.
        • Kumar V.
        Tunnel widening after anterior cruciate ligament reconstruction: A prospective randomized computed tomography–based study comparing 2 different femoral fixation methods for hamstring graft.
        Arthroscopy. 2011; 27: 776-783
        • Järvelä T.
        • Moisala A.S.
        • Paakkala T.
        • Paakkala A.
        Tunnel enlargement after double-bundle anterior cruciate ligament reconstruction: A prospective, randomized study.
        Arthroscopy. 2008; 24: 1349-1357
        • Lee D.W.
        • Lee J.W.
        • Kim S.B.
        • et al.
        Comparison of poly-L-lactic acid and poly-L-lactic acid/hydroxyapatite bioabsorbable screws for tibial fixation in ACL reconstruction: Clinical and magnetic resonance imaging results.
        Clin Orthop Surg. 2017; 9: 270-279
        • Sundemo D.
        • Alentorn-Geli E.
        • Hoshino Y.
        • Musahl V.
        • Karlsson J.
        • Samuelsson K.
        Objective measures on knee instability: Dynamic tests: A review of devices for assessment of dynamic knee laxity through utilization of the pivot shift test.
        Curr Rev Musculoskelet Med. 2016; 9: 148-159
        • DiBartola A.C.
        • Everhart J.S.
        • Kaeding C.C.
        • Magnussen R.A.
        • Flanigan D.C.
        Maximum load to failure of high dose versus low dose gamma irradiation of anterior cruciate ligament allografts: A meta-analysis.
        Knee. 2016; 23: 755-762
        • Guo L.
        • Yang L.
        • Duan X.J.
        • et al.
        Anterior cruciate ligament reconstruction with bone-patellar tendon-bone graft: Comparison of autograft, fresh-frozen allograft, and γ-irradiated allograft.
        Arthroscopy. 2012; 28: 211-217