Advertisement

Suture Tape Augmentation Improves the Biomechanical Performance of Bone-Patellar Tendon-Bone Grafts Used for Anterior Cruciate Ligament Reconstruction

      Purpose

      The purpose of this study was to investigate the time-zero biomechanical properties (stiffness, displacement, and load at failure) of bone-patellar tendon-bone (BTB) grafts used for anterior cruciate ligament (ACL) reconstruction with and without suture tape augmentation as a means to determine the potential clinical benefit of this technique.

      Methods

      Eight juvenile porcine knees underwent ACL reconstruction with a human cadaveric BTB graft (control). These were compared to 8 juvenile porcine knees that underwent ACL reconstruction with a BTB graft augmented with suture tape. All knees underwent biomechanical testing utilizing a dynamic tensile testing machine. Cyclic loading between 50-250N was performed for 500 cycles at 1 Hz to simulate in vivo ACL loads during the early rehabilitation phase. The grafts were displaced during load-at-failure tensile testing at 20 mm/min. Differences in graft displacement, stiffness, and load at failure for the control and suture tape augmented groups were compared with the Student t-test with a significance level of P < .05.

      Results

      There was no difference in graft displacement between the 2 groups. A 104% higher postcyclic stiffness was noted in the augmented group compared to the controls (augmentation: 261 ± 76 N/mm versus control 128 ± 28 N/mm, P = .002). The mean ultimate load at failure was 57% higher in the augmented group compared to controls (744 ± 219 N vs postcyclic 473 ± 169 N, respectively [P = .015]). There was no difference in mode of failure between the control knees and those augmented with suture tape, with approximately half failing from pull off of the tendon from the bone plug and half with pull out of the bone plug from the tunnel.

      Conclusion

      Independent suture tape augmentation of a BTB ACL reconstruction grafts was associated with a 104% increase in graft stiffness and a 57% increase in load at failure compared to nonaugmented BTB grafts.

      Clinical Relevance

      In vivo suture tape augmentation of a BTB ACL reconstruction increases graft construct strength and stiffness, which may reduce graft failure in the clinical setting.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wiggins A.
        • Grandhi R.
        • Schneider D.
        • Stanfield D.
        • Webster K.
        • Myer G.
        Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: A systematic review and meta-analysis.
        Am J Sports Med. 2016; 44: 1861-1876
        • Webster K.
        • Feller J.
        • Leigh W.
        • Richmond A.
        Younger patients are at increased risk for graft rupture and contralateral injury after anterior cruciate ligament reconstruction.
        Am J Sports Med. 2014; 42: 641-647
        • Morgan M.
        • Salmon L.
        • Waller A.
        • Roe J.
        • Pinczewski L.
        Fifteen-year survival of endoscopic anterior cruciate ligament reconstruction in patients aged 18 years and younger.
        Am J Sports Med. 2016; 44: 384-392
        • Kay J.
        • Memon M.
        • Marx R.
        • Peterson D.
        • Simunovic N.
        • Ayeni O.
        Over 90 % of children and adolescents return to sport after anterior cruciate ligament reconstruction: A systematic review and meta-analysis.
        Knee Surg Sports Traumatol Arthrosc. 2018; 26: 1019-1036
        • Heath E.
        • Salmon L.
        • Cooper R.
        • Pappas E.
        • Roe J.
        • Pinczewski L.
        5-year survival of pediatric anterior cruciate ligament reconstruction with living donor hamstring tendon grafts.
        Am J Sports Med. 2019; 47: 41-51
        • Ardern C.
        • Taylor N.
        • Feller J.
        • Webster K.
        Fifty-five per cent return to competitive sport following anterior cruciate ligament reconstruction surgery: An updated systematic review and meta-analysis including aspects of physical functioning and contextual factors.
        Br J Sports Med. 2014; 48: 1543-1552
        • McCullough K.
        • Phelps K.
        • Spindler K.
        • et al.
        Return to high school- and college-level football after anterior cruciate ligament reconstruction: a Multicenter Orthopaedic Outcomes Network (MOON) cohort study.
        Am J Sports Med. 2012; 40: 2523-2529
        • Brophy R.
        • Schmitz L.
        • Wright R.
        • et al.
        Return to play and future ACL injury risk after ACL reconstruction in soccer athletes from the Multicenter Orthopaedic Outcomes Network (MOON) group.
        Am J Sports Med. 2012; 40: 2517-2522
        • Ding D.
        • Zhang A.
        • et al.
        • MARS Group
        Subsequent surgery after revision anterior cruciate ligament reconstruction: Rates and risk factors from a multicenter cohort.
        Am J Sports Med. 2017; 45: 2068-2076
        • Yasuda K.
        • Kondo E.
        • Ichiyama H.
        Anatomic reconstruction of the anteromedial and posterolateral bundles of the anterior cruciate ligament using hamstring tendon grafts.
        Arthroscopy. 2004; 20: 1015-1025
        • Bedi A.
        • Musahl V.
        • Steuber V.
        • et al.
        Trans-tibial versus anteromedial portal reaming in anterior cruciate ligament reconstruction: An anatomic and biomechanical evaluation of surgical technique.
        Arthroscopy. 2011; 27: 380-390
        • Monaco E.
        • Maestri B.
        • Conteduca F.
        • et al.
        Extra-articular ACL reconstruction and pivot shift: In vivo dynamic evaluation with navigation.
        Am J Sports Med. 2014; 42: 1669-1674
        • Bachmaier S.
        • Smith P.
        • Bley J.
        • Wijdicks C.
        Independent suture tape reinforcement of small and standard diameter grafts for anterior cruciate ligament reconstruction: A biomechanical full construct model.
        Arthroscopy. 2018; 34: 490-499
        • Noonan B.C.
        • Bachmaier S.
        • Wijdicks C.A.
        • Bedi A.
        Independent suture tape reinforcement of tripled smaller-diameter and quadrupled grafts for anterior cruciate ligament reconstruction with tibial screw fixation: a biomechanical full construct model.
        Arthroscopy. 2020; 36: 481-489
        • Bodendorfer B.
        • Michaelson E.
        • Shu H.
        • et al.
        Suture augmented versus standard anterior cruciate ligament reconstruction: A matched comparative analysis.
        Arthroscopy. 2019; 35: 2114-2122
        • Smith P.
        Editorial commentary: Anterior cruciate ligament graft reinforcement: A new era supported by science.
        Arthroscopy. 2019; 35: 2123-2126
        • Saper M.
        Quadriceps tendon autograft anterior cruciate ligament reconstruction with independent suture tape reinforcement.
        Arthrosc Tech. 2018; 7: e1221-e1229
        • Smith J.
        • Yasen S.
        • Palmer H.
        • et al.
        Paediatric ACL repair reinforced with temporary internal bracing.
        Knee Surg Sports Traumatol Arthrosc. 2016; 24: 1845-1851
        • Cook J.
        • Smith P.
        • Stannard J.
        • et al.
        A canine arthroscopic anterior cruciate ligament reconstruction model for study of synthetic augmentation of tendon allografts.
        J Knee Surg. 2017; 30: 704-711
        • Smith P.
        • Bley J.
        Allograft anterior cruciate ligament reconstruction utilizing internal brace augmentation.
        Arthrosc Tech. 2016; 5: e1143-e1147
        • DiFelice G.
        • Villegas C.
        • Taylor S.
        Anterior cruciate ligament preservation: Early results of a novel arthroscopic technique for suture anchor primary anterior cruciate ligament repair.
        Arthroscopy. 2015; 31: 2162-2171
        • Peterson L.
        • Eklund U.
        • Engström B.
        • et al.
        Long-term results of a randomized study on anterior cruciate ligament reconstruction with or without a synthetic degradable augmentation device to support the autograft.
        Knee Surg Sports Traumatol Arthrosc. 2014; 22: 2109-2120
        • McGee R.
        • Daggett M.
        • Jacks A.
        • Hoang V.
        • Theobald H.
        Patellar tendon graft anterior cruciate ligament reconstruction technique with suture tape augmentation.
        Arthrosc Tech. 2019; 8: e355-e361
        • Kamath G.
        • Murphy T.
        • Creighton A.
        • et al.
        Anterior cruciate ligament injury, return to play, and reinjury in the elite collegiate athlete: Analysis of an NCAA Division I cohort.
        Am J Sports Med. 2014; 42: 1638-1643
        • van Eck C.F.
        • Schkrohowsky J.G.
        • Working Z.M.
        • Irrgang J.J.
        • Fu F.H.
        Prospective analysis of failure rate and predictors of failure after anatomic anterior cruciate ligament reconstruction with allograft.
        Am J Sports Med. 2012; 40: 800-807
        • Kaeding C.C.
        • Pedroza A.D.
        • Reinke E.K.
        • Huston L.J.
        • Spindler K.P.
        • MOON Consortium
        Risk Factors and predictors of subsequent ACL injury in either knee after ACL reconstruction: Prospective analysis of 2488 primary ACL reconstructions from the MOON Cohort.
        Am J Sports Med. 2015; 43: 1583-1590
        • Aerssens J.
        • Boonen S.
        • Lowet G.
        • Dequeker J.
        Interspecies differences in bone composition, density, and quality: Potential implications for in vivo bone research.
        Endocrinology. 1998; 139: 663-670
        • Domnick C.
        • Wieskötter B.
        • Raschke M.J.
        • et al.
        Evaluation of biomechanical properties: Are porcine flexor tendons and bovine extensor tendons eligible surrogates for human tendons in in vitro studies?.
        Arch Orthop Trauma Surg. 2016; 136: 1465-1471
        • Shelbourne K.
        • Pandy M.
        • Anderson F.
        • Torry M.
        Pattern of anterior cruciate ligament force in normal walking.
        J Biomech. 2004; 37: 797-805
        • Toutoungi D.
        • Lu T.
        • Leardini A.
        • et al.
        Cruciate ligament forces in the human knee during rehabilitation exercises.
        Clin Biomech. 2000; 15: 176-187
        • Parkkari J.
        • Pasanen K.
        • Mattila V.M.
        • Kannus P.
        • Rimpela A.
        The risk for a cruciate ligament injury of the knee in adolescents and young adults: A population-based cohort study of 46 500 people with a 9 year follow-up.
        Br J Sports Med. 2008; 42: 422-426
        • Samuelsen B.
        • Webster K.
        • Johnson N.
        • Hewett T.
        • Krych A.
        Hamstring autograft versus patellar tendon autograft for ACL reconstruction: Is there a difference in graft failure rate? A meta-analysis of 47,613 patients.
        Clin Orthop Relat Res. 2017; 475: 2459-2468
        • Grassi A.
        • Ardern C.
        • Marcheggiani Muccioli G.
        • Neri M.
        • Marcacci M.
        • Zaffagnini S.
        Does revision ACL reconstruction measure up to primary surgery? A meta-analysis comparing patient-reported and clinician-reported outcomes, and radiographic results.
        Br J Sports Med. 2016; 50: 716-724
        • Kopf S.
        • Pombo M.W.
        • Shen W.
        • Irrgang J.
        • Fu F.
        The ability of 3 different approaches to restore the anatomic anteromedial bundle femoral insertion site during anatomic anterior cruciate ligament reconstruction.
        Arthroscopy. 2011; 27: 200-206
        • Gilmer B.
        • Crall T.
        • DeLong J.
        • Kubo T.
        • Mackay G.
        • Jani S.
        Biomechanical analysis of internal bracing for treatment of medial knee injuries.
        Orthopedics. 2016; 39: 532
        • Whelan D.
        • Leiter J.
        • Sasyniuk T.
        • et al.
        Double-row repair of the distal attachment of the superficial medial collateral ligament: a basic science pilot study.
        Knee Surg Sports Traumatol Arthrosc. 2015; 23: 2820-2824
        • Lubowitz J.
        • MacKay G.
        • Gilmer B.
        Knee medial collateral ligament and posteromedial corner anatomic repair with internal bracing.
        Arthrosc Tech. 2014; 3: 505
        • Lee K.
        • Yang D.
        • Lee G.
        • Choy W.
        Suture bridge fixation technique for posterior cruciate ligament avulsion fracture.
        Clin Orthop Surg. 2015; 7: 505-508
        • Yoon J.
        • Park C.
        • Lee D.
        Arthroscopic suture bridge fixation technique with multiple crossover ties for posterior cruciate ligament tibial avulsion fracture.
        Knee Surg Sports Traumatol Arthrosc. 2018; 26: 912-918
        • Clancy W.
        • Narechania R.
        • Rosenberg T.
        • Gmeiner J.
        • Wisnefske D.
        • Lange T.
        Anterior and posterior cruciate ligament reconstruction in Rhesus monkeys.
        J Bone Joint Surg. 1981; 63-A: 1270-1284
        • Van Eck C.
        • Limpisvasti O.
        • ElAttrache N.
        Is there a role for internal bracing and repair of the anterior cruciate ligament? A systematic literature review.
        Am J Sports Med. 2018; 46: 2291-2298
        • Daggett M.
        • Redler A.
        • Witte K.
        Anterior cruciate ligament reconstruction with suture tape augmentation.
        Arthrosc Tech. 2018; 7: e385-e389
        • Smith P.A.
        • Bradley J.P.
        • Konicek J.
        • Bley J.A.
        • Wijdicks C.A.
        Independent suture tape internal brace reinforcement of bone-patellar tendon-bone allografts: Biomechanical assessment in a full-ACL reconstruction laboratory model.
        J Knee Surg. 2020; 33: 1047-1054
        • Landsdown D.
        • Riff A.
        • Meadows M.
        • Yanke A.
        • Bach B.
        What factors influence the biomechanical properties of allograft tissue for ACL reconstruction? A systematic review.
        Clin Orthop Rel Res. 2017; 475: 2412-2426