Advertisement

Editorial Commentary: Anterior Cable Reconstruction for the Shoulder Superior Capsule: Time for “Indication Rounds”

      Abstract

      Anterior cable reconstruction (ACR) techniques for the superior capsule are multiple and varied. To optimize patient outcomes, technical considerations must be supported by basic science, both anatomically and biomechanically. ACR was designed to treat only partially repairable rotator cuff tendon tears, to provide a static support to a dynamic partial (and therefore “nonanatomic”) repair, and to treat tears that could not be treated by transosseous-equivalent footprint-restoring “anatomic” repairs (both capsule and tendon repaired), but were also not so large as to necessitate superior capsule reconstruction. ACR allows restoration of posterosuperior capsular function with side-to-side repair sutures, and much of the biomechanical functionality comes from using whatever inherent native superior capsule is available. Cable reconstructions should be secured to normal attachment sites on the glenoid and greater tuberosity sulcus. Also, graft tension must be accounted for when considering humeral motion such as rotation and adduction. The indications for ACR need to be carefully considered and account for both anatomic and biomechanical rationales. In the face of new ACR techniques, the need to discern what is possible versus what procedure is indicated cannot be overlooked.
      Addressing surgical indications requires answering the question, Does the patient have the symptom profile and pathology the procedure actually treats? And is the procedure technique sufficient to achieve the outcome? Addressing indications was a fundamental practice during residency at Columbia New York Orthopaedic Hospital, as now-Chairman William N. Levine would oversee weekly “Indication Rounds” for the Sports/Shoulder Service rotation. The concept for transosseous-equivalent (TOE) repair came from my interest in a biomechanical footprint pressure study I performed for transosseous tunnel repair
      • Park M.C.
      • Cadet E.R.
      • Levine W.N.
      • Bigliani L.U.
      • Ahmad C.S.
      Tendon-to-bone pressure distributions at a repaired rotator cuff footprint using transosseous suture and suture anchor fixation techniques.
      (suture anchors allowing for a tunnel-“equivalent” repair). The concept was rapidly applied into practice, the catalyst arising from technical advancements in knotless anchor technology.
      • Park M.C.
      • Tibone J.E.
      • ElAttrache N.S.
      • Ahmad C.S.
      • Jun B.J.
      • Lee T.Q.
      Part II: Biomechanical assessment for a footprint-restoring arthroscopic transosseous-equivalent rotator cuff repair technique compared to a double-row technique.
      The early learning curve dealt with overtensioning repairs, perhaps with overreaching indications based on biomechanical performance,
      • Park M.C.
      • Idjadi J.A.
      • ElAttrache N.S.
      • Tibone J.E.
      • McGarry M.H.
      • Lee T.Q.
      The effect of dynamic external rotation comparing 2 footprint-restoring rotator cuff repair techniques.
      • Park M.C.
      • Pirolo J.M.
      • Park C.J.
      • McGarry M.H.
      • Tibone J.E.
      • Lee T.Q.
      The effect of abduction and rotation on footprint contact for single-row, double-row, and transosseous-equivalent rotator cuff repair techniques.
      • Park M.C.
      • ElAttrache N.S.
      • Tibone J.E.
      • Ahmad C.S.
      • Jun B.J.
      • Lee T.Q.
      Part I: Footprint contact characteristics for an arthroscopic transosseous-equivalent rotator cuff repair technique.
      with many variations of the construct reported.
      • Bisson L.J.
      • Manohar L.M.
      A biomechanical comparison of transosseous-suture anchor and suture bridge rotator cuff repairs in cadavers.
      • Burkhart S.S.
      • Adams C.R.
      • Burkhart S.S.
      • Schoolfield J.D.
      A biomechanical comparison of 2 techniques of footprint reconstruction for rotator cuff repair: The SwiveLock-FiberChain construct versus standard double-row repair.
      • Spang J.T.
      • Buchmann S.
      • Brucker P.U.
      • et al.
      A biomechanical comparison of 2 transosseous-equivalent double-row rotator cuff repair techniques using bioabsorbable anchors: Cyclic loading and failure behavior.
      • Bisson L.J.
      • Manohar L.M.
      A biomechanical comparison of the pull-out strength of no. 2 FiberWire suture and 2-mm FiberWire tape in bovine rotator cuff tendons.
      • Pauly S.
      • Kieser B.
      • Schill A.
      • Gerhardt C.
      • Scheibel M.
      Biomechanic comparison of 4 double-row suture bridging rotator cuff repair techniques using different medial-row configurations.
      • Pauly S.
      • Fiebig D.
      • Kieser B.
      • Albrecht B.
      • Schill A.
      • Scheibel M.
      Biomechanical comparison of four double-row speed-bridging rotator cuff repair techniques with or without medial or lateral row enhancement.
      • Burkhart S.S.
      • Denard P.J.
      • Obopilwe E.
      • Mazzocca A.D.
      Optimizing pressurized contact area in rotator cuff repair: the diamondback repair.
      • Ostrander III, R.V.
      • Mckinney B.I.
      Evaluation of footprint contact area and pressure using a triple-row modification of the suture-bridge technique for rotator cuff repair.
      My concept of “technical efficiency ratio” was published first in Arthroscopy
      • Park M.C.
      Biomechanical validation of rotator cuff repair techniques and considerations for a ‘technical efficiency ratio.
      —certain reported repair techniques were arguably not indicated with supraphysiological extraneous suture passes, at least from a biomechanical perspective.
      • Park M.C.
      • Peterson A.
      • Patton J.
      • McGarry M.H.
      • Park C.J.
      • Lee T.Q.
      Biomechanical effects of a 2 suture-pass medial inter-implant mattress on transosseous-equivalent rotator cuff repair and considerations for a ‘technical efficiency ratio’.
      Similarly, whereas anterior cable reconstruction (ACR) as a technique has been introduced from a biomechanical standpoint,
      • Park M.C.
      • Itami Y.
      • Lin C.C.
      • et al.
      Anterior cable reconstruction using the proximal biceps tendon for large rotator cuff defects limits superior migration and subacromial contact without inhibiting range of motion: A biomechanical analysis.
      ,
      • Park M.C.
      • Hung V.T.
      • DeGiacomo A.F.
      • McGarry M.H.
      • Adamson G.J.
      • Lee T.Q.
      Anterior cable reconstruction of the superior capsule using semitendinosus allograft for large rotator cuff defects limits superior migration and subacromial contact without inhibiting range of motion: A biomechanical analysis.
      there has been a rapid and varied technical application.
      • De Giacomo A.F.
      • Park M.C.
      • Lee T.Q.
      Anterior cable reconstruction using the proximal biceps tendon for large rotator cuff defects.
      • Kim Y.S.
      • Lee H.J.
      • Park I.
      • Sung G.Y.
      • Kim D.J.
      • Kim J.H.
      Arthroscopic in situ superior capsular reconstruction using the long head of the biceps tendon.
      • Adrian S.C.
      • Field L.D.
      Biceps Transposition for biological superior capsular reconstruction.
      • Fandridis E.
      • Zampeli F.
      Superior capsular reconstruction with double bundle of long head biceps tendon autograft: The ‘box’ technique.
      • Milano G.
      • Marchi G.
      • Bertoni G.
      • et al.
      Augmented repair of large to massive delaminated rotator cuff tears with autologous long head of the biceps tendon graft: The arthroscopic ‘cuff-plus’ technique.
      • Shin S.J.
      • Kim I.W.
      • Park I.
      • Lee S.
      • Kim M.S.
      Anterior cable reconstruction using the biceps tendon in retracted anterior L-shaped rotator cuff tears.
      • Tang J.
      • Zhao J.
      Dynamic biceps rerouting for irreparable posterior-superior rotator cuff tear.
      • Seo J.B.
      • Kwak K.Y.
      • Park B.
      • Yoo J.S.
      Anterior cable reconstruction using the proximal biceps tendon for reinforcement of arthroscopic rotator cuff repair prevent retear and increase acromiohumeral distance.
      • Terra B.B.
      • Sassine T.J.
      • Ejnisman B.
      • de Castro Pochini A.
      • Belangero P.S.
      Arthroscopic partial superior capsular reconstruction using the long head of the biceps tendon-technique description.
      • Rhee S.M.
      • Youn S.M.
      • Park J.H.
      • Rhee Y.G.
      Biceps rerouting for semi-rigid large-to-massive rotator cuff tears.
      • Bader D.A.L.
      • Garcia Jr., J.C.
      Pivot superior capsular reconstruction of the shoulder.
      The indications for ACR need to be carefully considered in the context of the multiple techniques presented,
      • De Giacomo A.F.
      • Park M.C.
      • Lee T.Q.
      Anterior cable reconstruction using the proximal biceps tendon for large rotator cuff defects.
      • Kim Y.S.
      • Lee H.J.
      • Park I.
      • Sung G.Y.
      • Kim D.J.
      • Kim J.H.
      Arthroscopic in situ superior capsular reconstruction using the long head of the biceps tendon.
      • Adrian S.C.
      • Field L.D.
      Biceps Transposition for biological superior capsular reconstruction.
      • Fandridis E.
      • Zampeli F.
      Superior capsular reconstruction with double bundle of long head biceps tendon autograft: The ‘box’ technique.
      • Milano G.
      • Marchi G.
      • Bertoni G.
      • et al.
      Augmented repair of large to massive delaminated rotator cuff tears with autologous long head of the biceps tendon graft: The arthroscopic ‘cuff-plus’ technique.
      • Shin S.J.
      • Kim I.W.
      • Park I.
      • Lee S.
      • Kim M.S.
      Anterior cable reconstruction using the biceps tendon in retracted anterior L-shaped rotator cuff tears.
      • Tang J.
      • Zhao J.
      Dynamic biceps rerouting for irreparable posterior-superior rotator cuff tear.
      • Seo J.B.
      • Kwak K.Y.
      • Park B.
      • Yoo J.S.
      Anterior cable reconstruction using the proximal biceps tendon for reinforcement of arthroscopic rotator cuff repair prevent retear and increase acromiohumeral distance.
      • Terra B.B.
      • Sassine T.J.
      • Ejnisman B.
      • de Castro Pochini A.
      • Belangero P.S.
      Arthroscopic partial superior capsular reconstruction using the long head of the biceps tendon-technique description.
      • Rhee S.M.
      • Youn S.M.
      • Park J.H.
      • Rhee Y.G.
      Biceps rerouting for semi-rigid large-to-massive rotator cuff tears.
      • Bader D.A.L.
      • Garcia Jr., J.C.
      Pivot superior capsular reconstruction of the shoulder.
      accounting for both anatomic and biomechanical rationales.
      • Park M.C.
      • Itami Y.
      • Lin C.C.
      • et al.
      Anterior cable reconstruction using the proximal biceps tendon for large rotator cuff defects limits superior migration and subacromial contact without inhibiting range of motion: A biomechanical analysis.
      ,
      • Park M.C.
      • Hung V.T.
      • DeGiacomo A.F.
      • McGarry M.H.
      • Adamson G.J.
      • Lee T.Q.
      Anterior cable reconstruction of the superior capsule using semitendinosus allograft for large rotator cuff defects limits superior migration and subacromial contact without inhibiting range of motion: A biomechanical analysis.
      The indications for a new technique such as ACR require acknowledging the basic science behind it and specifying the pathology the ACR treats. The impetus for the conception of ACR arose from the technical challenges with superior capsule reconstruction (SCR). ACR was designed to treat only partially repairable rotator cuff tendon tears, to provide a static support to a dynamic partial (and therefore “nonanatomic”) repair, and to treat tears that could not be treated by TOE footprint-restoring “anatomic” repairs (both capsule and tendon repaired), but were also not so large as to necessitate SCR.
      • Park M.C.
      • Itami Y.
      • Lin C.C.
      • et al.
      Anterior cable reconstruction using the proximal biceps tendon for large rotator cuff defects limits superior migration and subacromial contact without inhibiting range of motion: A biomechanical analysis.
      ACR allows for restoring posterosuperior capsular function with side-to-side repair sutures, and much of the biomechanical functionality comes from using whatever inherent native superior capsule is available.
      • Park M.C.
      • Itami Y.
      • Lin C.C.
      • et al.
      Anterior cable reconstruction using the proximal biceps tendon for large rotator cuff defects limits superior migration and subacromial contact without inhibiting range of motion: A biomechanical analysis.
      ,
      • Park M.C.
      • Hung V.T.
      • DeGiacomo A.F.
      • McGarry M.H.
      • Adamson G.J.
      • Lee T.Q.
      Anterior cable reconstruction of the superior capsule using semitendinosus allograft for large rotator cuff defects limits superior migration and subacromial contact without inhibiting range of motion: A biomechanical analysis.
      In their study, “Biceps Rerouting for Semi-Rigid Large-to-Massive Rotator Cuff Tears,”
      • Rhee S.M.
      • Youn S.M.
      • Park J.H.
      • Rhee Y.G.
      Biceps rerouting for semi-rigid large-to-massive rotator cuff tears.
      Rhee, Youn, and Rhee describe a technique that uses the long-head biceps tendon to “act like an anterior cable,” underneath a supraspinatus tendon repair. Based on the original biomechanical description, the primary concern with their reconstruction as described is that the “cable” is not secured to the native attachment site where the capsule attaches on the medial footprint.
      • Park M.C.
      • Itami Y.
      • Lin C.C.
      • et al.
      Anterior cable reconstruction using the proximal biceps tendon for large rotator cuff defects limits superior migration and subacromial contact without inhibiting range of motion: A biomechanical analysis.
      Any capsular reconstruction should technically have an anatomically based rationale. In addition to this concept, Rhee et al.
      • Rhee S.M.
      • Youn S.M.
      • Park J.H.
      • Rhee Y.G.
      Biceps rerouting for semi-rigid large-to-massive rotator cuff tears.
      do not account for capsular tensioning and the idea that anterior and posterior graft tension is affected by glenohumeral motion such as rotation and adduction—a biomechanically based rationale.
      In the original description, I discussed the concept that ACR could be indicated for partially reparable tendon tears, in which the ACR would provide capsular function (static support) to the dynamic function of the repaired tendon; this would apply to medialized repairs, which by definition are nonanatomic and could stand to benefit from capsular static support as well.
      • Park M.C.
      • Itami Y.
      • Lin C.C.
      • et al.
      Anterior cable reconstruction using the proximal biceps tendon for large rotator cuff defects limits superior migration and subacromial contact without inhibiting range of motion: A biomechanical analysis.
      Rhee et al.
      • Rhee S.M.
      • Youn S.M.
      • Park J.H.
      • Rhee Y.G.
      Biceps rerouting for semi-rigid large-to-massive rotator cuff tears.
      have now clinically tested the concept of medialized repairs that do not restore the entire footprint, where the underlying capsule is compromised and might benefit from a static reconstruction that supports the dynamic tendon component of the repair. They rightly point out that there is less repair footprint contact because the graft occupies the same footprint region. This, and the other considerations discussed such as sulcus fixation and rotational tension, dictate that further study is still required.
      As mentioned above, the indication for ACR is for tears that are not fully repairable (not otherwise treated with TOE repair) but not massively irreparable (and amenable to SCR). Technically, as with any procedure (TOE, ACR, and SCR, for example), reconciling basic science (biomechanical and anatomic), with clinical application would only improve patient outcomes and the predictability of such outcomes. Ideally, basic science would validate techniques whenever surgeons are faced with new surgical procedures. Rhee et al.
      • Rhee S.M.
      • Youn S.M.
      • Park J.H.
      • Rhee Y.G.
      Biceps rerouting for semi-rigid large-to-massive rotator cuff tears.
      are putting the basic science
      • Park M.C.
      • Itami Y.
      • Lin C.C.
      • et al.
      Anterior cable reconstruction using the proximal biceps tendon for large rotator cuff defects limits superior migration and subacromial contact without inhibiting range of motion: A biomechanical analysis.
      to the test. Their work
      • Rhee S.M.
      • Youn S.M.
      • Park J.H.
      • Rhee Y.G.
      Biceps rerouting for semi-rigid large-to-massive rotator cuff tears.
      and that of others
      • Barth J.
      • Olmos M.I.
      • Swan J.
      • Barthelemy R.
      • Delsol P.
      • Boutsiadis A.
      Superior capsular reconstruction with the long head of the biceps autograft prevents infraspinatus retear in massive posterosuperior retracted rotator cuff tears.
      • KIm J.H.
      • Lee H.J.
      • Park T.Y.
      • Lee J.U.
      • Kim Y.S.
      Preliminary outcomes of arthroscopic biceps rerouting for the treatment of large to massive rotator cuff tears.
      • Kitridis D.
      • Yiannakopoulos C.
      • Sinopidis C.
      • Givissis P.
      • Galanis N.
      Superior capsular reconstruction of the shoulder using the long head of the biceps tendon: A systematic review of surgical techniques and clinical outcomes.
      are showing clinical success. As with the TOE experience after its introduction, in the face of new ACR techniques, we cannot overlook the need to discern what can be done versus when a procedure is indicated with what specific technique.
      • Park M.C.
      • Peterson A.
      • Patton J.
      • McGarry M.H.
      • Park C.J.
      • Lee T.Q.
      Biomechanical effects of a 2 suture-pass medial inter-implant mattress on transosseous-equivalent rotator cuff repair and considerations for a ‘technical efficiency ratio’.

      Supplementary Data

      References

        • Park M.C.
        • Cadet E.R.
        • Levine W.N.
        • Bigliani L.U.
        • Ahmad C.S.
        Tendon-to-bone pressure distributions at a repaired rotator cuff footprint using transosseous suture and suture anchor fixation techniques.
        Am J Sports Med. 2005; 33: 1154-1159
        • Park M.C.
        • Tibone J.E.
        • ElAttrache N.S.
        • Ahmad C.S.
        • Jun B.J.
        • Lee T.Q.
        Part II: Biomechanical assessment for a footprint-restoring arthroscopic transosseous-equivalent rotator cuff repair technique compared to a double-row technique.
        J Shoulder Elbow Surg. 2007; 16: 469-476
        • Park M.C.
        • Idjadi J.A.
        • ElAttrache N.S.
        • Tibone J.E.
        • McGarry M.H.
        • Lee T.Q.
        The effect of dynamic external rotation comparing 2 footprint-restoring rotator cuff repair techniques.
        Am J Sports Med. 2008; 36: 893-900
        • Park M.C.
        • Pirolo J.M.
        • Park C.J.
        • McGarry M.H.
        • Tibone J.E.
        • Lee T.Q.
        The effect of abduction and rotation on footprint contact for single-row, double-row, and transosseous-equivalent rotator cuff repair techniques.
        Am J Sports Med. 2009; 37: 1599-1608
        • Park M.C.
        • ElAttrache N.S.
        • Tibone J.E.
        • Ahmad C.S.
        • Jun B.J.
        • Lee T.Q.
        Part I: Footprint contact characteristics for an arthroscopic transosseous-equivalent rotator cuff repair technique.
        J Shoulder Elbow Surg. 2007; 16: 461-468
        • Bisson L.J.
        • Manohar L.M.
        A biomechanical comparison of transosseous-suture anchor and suture bridge rotator cuff repairs in cadavers.
        Am J Sports Med. 2009; 37: 1991-1995
        • Burkhart S.S.
        • Adams C.R.
        • Burkhart S.S.
        • Schoolfield J.D.
        A biomechanical comparison of 2 techniques of footprint reconstruction for rotator cuff repair: The SwiveLock-FiberChain construct versus standard double-row repair.
        Arthroscopy. 2009; 25: 274-281
        • Spang J.T.
        • Buchmann S.
        • Brucker P.U.
        • et al.
        A biomechanical comparison of 2 transosseous-equivalent double-row rotator cuff repair techniques using bioabsorbable anchors: Cyclic loading and failure behavior.
        Arthroscopy. 2009; 25: 872-879
        • Bisson L.J.
        • Manohar L.M.
        A biomechanical comparison of the pull-out strength of no. 2 FiberWire suture and 2-mm FiberWire tape in bovine rotator cuff tendons.
        Arthroscopy. 2010; 26: 1463-1468
        • Pauly S.
        • Kieser B.
        • Schill A.
        • Gerhardt C.
        • Scheibel M.
        Biomechanic comparison of 4 double-row suture bridging rotator cuff repair techniques using different medial-row configurations.
        Arthroscopy. 2010; 26: 1281-1288
        • Pauly S.
        • Fiebig D.
        • Kieser B.
        • Albrecht B.
        • Schill A.
        • Scheibel M.
        Biomechanical comparison of four double-row speed-bridging rotator cuff repair techniques with or without medial or lateral row enhancement.
        Knee Surg Sports Traumatol Arthrosc. 2011; 19: 2090-2097
        • Burkhart S.S.
        • Denard P.J.
        • Obopilwe E.
        • Mazzocca A.D.
        Optimizing pressurized contact area in rotator cuff repair: the diamondback repair.
        Arthroscopy. 2012; 28: 188-195
        • Ostrander III, R.V.
        • Mckinney B.I.
        Evaluation of footprint contact area and pressure using a triple-row modification of the suture-bridge technique for rotator cuff repair.
        J Shoulder Elbow Surg. 2012; 21: 1406-1412
        • Park M.C.
        Biomechanical validation of rotator cuff repair techniques and considerations for a ‘technical efficiency ratio.
        Arthroscopy. 2013; 29: 1230-1234
        • Park M.C.
        • Peterson A.
        • Patton J.
        • McGarry M.H.
        • Park C.J.
        • Lee T.Q.
        Biomechanical effects of a 2 suture-pass medial inter-implant mattress on transosseous-equivalent rotator cuff repair and considerations for a ‘technical efficiency ratio’.
        J Shoulder Elbow Surg. 2013; 23: 361-368
        • Park M.C.
        • Itami Y.
        • Lin C.C.
        • et al.
        Anterior cable reconstruction using the proximal biceps tendon for large rotator cuff defects limits superior migration and subacromial contact without inhibiting range of motion: A biomechanical analysis.
        Arthroscopy. 2018; 34: 2590-2600
        • Park M.C.
        • Hung V.T.
        • DeGiacomo A.F.
        • McGarry M.H.
        • Adamson G.J.
        • Lee T.Q.
        Anterior cable reconstruction of the superior capsule using semitendinosus allograft for large rotator cuff defects limits superior migration and subacromial contact without inhibiting range of motion: A biomechanical analysis.
        Arthroscopy. 2021; 37: 1400-1410
        • De Giacomo A.F.
        • Park M.C.
        • Lee T.Q.
        Anterior cable reconstruction using the proximal biceps tendon for large rotator cuff defects.
        Arthrosc Tech. 2021; 10: e807-e813
        • Kim Y.S.
        • Lee H.J.
        • Park I.
        • Sung G.Y.
        • Kim D.J.
        • Kim J.H.
        Arthroscopic in situ superior capsular reconstruction using the long head of the biceps tendon.
        Arthrosc Tech. 2018; 7: e97-e103
        • Adrian S.C.
        • Field L.D.
        Biceps Transposition for biological superior capsular reconstruction.
        Arthrosc Tech. 2020; 9: e841-e846
        • Fandridis E.
        • Zampeli F.
        Superior capsular reconstruction with double bundle of long head biceps tendon autograft: The ‘box’ technique.
        Arthrosc Tech. 2020; 9: e1747-e1757
        • Milano G.
        • Marchi G.
        • Bertoni G.
        • et al.
        Augmented repair of large to massive delaminated rotator cuff tears with autologous long head of the biceps tendon graft: The arthroscopic ‘cuff-plus’ technique.
        Arthrosc Tech. 2020; 9: e1683-e1688
        • Shin S.J.
        • Kim I.W.
        • Park I.
        • Lee S.
        • Kim M.S.
        Anterior cable reconstruction using the biceps tendon in retracted anterior L-shaped rotator cuff tears.
        Arthrosc Tech. 2020; 10: e55-e60
        • Tang J.
        • Zhao J.
        Dynamic biceps rerouting for irreparable posterior-superior rotator cuff tear.
        Arthrosc Tech. 2020; 9: e1709-e1714
        • Seo J.B.
        • Kwak K.Y.
        • Park B.
        • Yoo J.S.
        Anterior cable reconstruction using the proximal biceps tendon for reinforcement of arthroscopic rotator cuff repair prevent retear and increase acromiohumeral distance.
        J Orthop. 2021; 23: 246-249
        • Terra B.B.
        • Sassine T.J.
        • Ejnisman B.
        • de Castro Pochini A.
        • Belangero P.S.
        Arthroscopic partial superior capsular reconstruction using the long head of the biceps tendon-technique description.
        Arthrosc Tech. 2021; 10: e669-e673
        • Rhee S.M.
        • Youn S.M.
        • Park J.H.
        • Rhee Y.G.
        Biceps rerouting for semi-rigid large-to-massive rotator cuff tears.
        Arthroscopy. 2021; 37: 2769-2779
        • Bader D.A.L.
        • Garcia Jr., J.C.
        Pivot superior capsular reconstruction of the shoulder.
        Arthrosc Tech. 2020; 9: e697-e701
        • Barth J.
        • Olmos M.I.
        • Swan J.
        • Barthelemy R.
        • Delsol P.
        • Boutsiadis A.
        Superior capsular reconstruction with the long head of the biceps autograft prevents infraspinatus retear in massive posterosuperior retracted rotator cuff tears.
        Am J Sports Med. 2020; 48: 1430-1438
        • KIm J.H.
        • Lee H.J.
        • Park T.Y.
        • Lee J.U.
        • Kim Y.S.
        Preliminary outcomes of arthroscopic biceps rerouting for the treatment of large to massive rotator cuff tears.
        J Shoulder Elbow Surg. 2021; 30: 1384-1392
        • Kitridis D.
        • Yiannakopoulos C.
        • Sinopidis C.
        • Givissis P.
        • Galanis N.
        Superior capsular reconstruction of the shoulder using the long head of the biceps tendon: A systematic review of surgical techniques and clinical outcomes.
        Medicina (Kaunas). 2021; 57: 229