Advertisement

Transepicondylar Distance Can Predict Graft and Tunnel Length for Different Pediatric Anterior Cruciate Ligament Reconstruction Techniques: A Magnetic Resonance Imaging Study

      Purpose

      To find a correlation and mathematical formulas between a linear 2-dimensional (2D) magnetic resonance imaging (MRI) measurement around the knee and the length of the grafts and tunnels required for both all-inside-all-epiphyseal and Kocher–Micheli pediatric anterior cruciate ligament (ACL) reconstruction techniques.

      Methods

      At time 0 and 30 days after, 2 observers measured: (1) on standard 2D knee MRI, 7 linear distances, representing morphologic measurements, such as transepicondylar distance (TD), and (2) on 3-dimensional (3D) MRI, 5 curved distances, corresponding to Kocher–Micheli and all-epiphyseal ACL reconstruction techniques. Intra- and interobserver reliability was tested for all measurements. The correlation between 2D and 3D measurements was tested. The 2D measurement with highest repeatability and reproducibility and with strongest correlation with 3D measurements was used to extract formulas to calculate the tunnel and graft length for the 2 techniques.

      Results

      Seventy-six MRIs were used. The intra- and interobserver reliability of 2D measurement was high, with TD showing the highest reproducibility and repeatability. 3D measurements also showed good intra and inter-observer reliability. A linear correlation was found between 2D and 3D measurements, with TD showing the strongest correlation. TD was used to extract formulas to calculate graft or tunnel length for Kocher–Micheli and all-epiphyseal ACL reconstruction. All formulas were proven to be accurate. A reference chart was also created to be used in the surgical setting.

      Conclusions

      With specific formulas, TD can be used to calculate the length of the tunnels, intra-articular portion and graft length for an all-inside all-epiphyseal pediatric ACL reconstruction and the length of the iliotibial band required for the Kocher–Micheli technique.

      Clinical Relevance

      The surgeon can use these formulas in pediatric ACL reconstruction preoperative planning, graft harvesting and tunnel drilling.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cordasco F.A.
        • Mayer S.W.
        • Green D.W.
        All-inside, all-epiphyseal anterior cruciate ligament reconstruction in skeletally immature athletes: Return to sport, incidence of second surgery, and 2-year clinical outcomes.
        Am J Sports Med. 2017; 45: 856-863
        • Nogaro M.C.
        • Abram S.G.F.
        • Alvand A.
        • Bottomley N.
        • Jackson W.F.M.
        • Price A.
        Paediatric and adolescent anterior cruciate ligament reconstruction surgery.
        Bone Joint J. 2020; 102-b: 239-245
        • Tepolt F.A.
        • Feldman L.
        • Kocher M.S.
        Trends in pediatric ACL reconstruction from the PHIS Database.
        J Pediatr Orthop. 2018; 38: e490-e494
        • Lima F.M.
        • Debieux P.
        • Aihara A.Y.
        • et al.
        The development of the intercondylar notch in the pediatric population.
        Knee. 2020; 27: 747-754
        • Gornitzky A.L.
        • Lott A.
        • Yellin J.L.
        • Fabricant P.D.
        • Lawrence J.T.
        • Ganley T.J.
        Sport-specific yearly risk and incidence of anterior cruciate ligament tears in high school athletes: A systematic review and meta-analysis.
        Am J Sports Med. 2016; 44: 2716-2723
        • Ramski D.E.
        • Kanj W.W.
        • Franklin C.C.
        • Baldwin K.D.
        • Ganley T.J.
        Anterior cruciate ligament tears in children and adolescents: A meta-analysis of nonoperative versus operative treatment.
        Am J Sports Med. 2014; 42: 2769-2776
        • Kocher M.S.
        • Garg S.
        • Micheli L.J.
        Physeal sparing reconstruction of the anterior cruciate ligament in skeletally immature prepubescent children and adolescents. Surgical technique.
        J Bone Joint Surg Am. 2006; 88: 283-293
        • Lo I.K.
        • Kirkley A.
        • Fowler P.J.
        • Miniaci A.
        The outcome of operatively treated anterior cruciate ligament disruptions in the skeletally immature child.
        Arthroscopy. 1997; 13: 627-634
        • Nagai K.
        • Rothrauff B.B.
        • Li R.T.
        • Fu F.H.
        Over-the-top ACL reconstruction restores anterior and rotatory knee laxity in skeletally immature individuals and revision settings.
        Knee Surg Sports Traumatol Arthrosc. 2020; 28: 538-543
        • Domzalski M.
        • Karauda A.
        • Grzegorzewski A.
        • Lebiedzinski R.
        • Zabierek S.
        • Synder M.
        Anterior cruciate ligament reconstruction using the transphyseal technique in prepubescent athletes: Midterm, prospective evaluation of results.
        Arthroscopy. 2016; 32: 1141-1146
        • Shakoor D.
        • Guermazi A.
        • Kijowski R.
        • et al.
        Diagnostic performance of three-dimensional mri for depicting cartilage defects in the knee: A meta-analysis.
        Radiology. 2018; 289: 71-82
        • Chagas-Neto F.A.
        • Nogueira-Barbosa M.H.
        • Lorenzato M.M.
        • Salim R.
        • Kfuri-Junior M.
        • Crema M.D.
        Diagnostic performance of 3D TSE MRI versus 2D TSE MRI of the knee at 1.5 T, with prompt arthroscopic correlation, in the detection of meniscal and cruciate ligament tears.
        Radiol Bras. 2016; 49: 69-74
        • Kayfan S.
        • Hlis R.
        • Pezeshk P.
        • et al.
        Three-dimensional and 3-Tesla MRI morphometry of knee meniscus in normal and pathologic state.
        Clin Anat. 2021; 34: 143-153
        • Kim T.K.
        • Phillips M.
        • Bhandari M.
        • Watson J.
        • Malhotra R.
        What differences in morphologic features of the knee exist among patients of various races? A systematic review.
        Clin Orthop Relat Res. 2017; 475: 170-182
        • Tran E.P.
        • Dingel A.B.
        • Terhune E.B.
        • et al.
        Anterior cruciate ligament length in pediatric populations: An MRI study.
        Orthop J Sports Med. 2021; 9 (23259671211002286)
        • Van Zyl R.
        • Van Schoor A.N.
        • Du Toit P.J.
        • et al.
        The association between anterior cruciate ligament length and femoral epicondylar width measured on preoperative magnetic resonance imaging or radiograph.
        Sports Med Arthrosc Rehabil. 2020; 2: e23-e31
        • Donner A.
        • Eliasziw M.
        Sample size requirements for reliability studies.
        Stat Med. 1987; 6: 441-448
        • Bland J.M.
        • Altman D.G.
        Statistical methods for assessing agreement between two methods of clinical measurement.
        Lancet. 1986; 1: 307-310
        • Bland J.M.
        • Altman D.G.
        Measuring agreement in method comparison studies.
        Stat Methods Med Res. 1999; 8: 135-160
        • Lima F.M.
        • Debieux P.
        • Astur D.C.
        • et al.
        The development of the anterior cruciate ligament in the paediatric population.
        Knee Surg Sports Traumatol Arthrosc. 2019; 27: 3354-3363
        • Putur D.E.
        • Slaven S.E.
        • Niu E.L.
        ACL Growth with age in pediatric patients: An MRI study.
        J Pediatr Orthop. 2020; 40: 438-447
        • Davis D.L.
        • Chen L.
        • Young S.T.
        Evaluation of epiphyses in the skeletally immature knee using magnetic resonance imaging: A pilot study to analyze parameters for anterior cruciate ligament reconstruction.
        Am J Sports Med. 2013; 41: 1579-1585
        • Davis D.L.
        • Chen L.
        • Ehinger M.
        A study of epiphyses in the young prepubescent knee using magnetic resonance imaging: Evaluation of parameters for anterior cruciate ligament reconstruction.
        Orthop J Sports Med. 2014; 2 (2325967114530090)
        • Ladenhauf H.N.
        • Jones K.J.
        • Potter H.G.
        • Nguyen J.T.
        • Green D.W.
        Understanding the undulating pattern of the distal femoral growth plate: Implications for surgical procedures involving the pediatric knee: A descriptive MRI study.
        Knee. 2020; 27: 315-323
        • Shea K.G.
        • Grimm N.L.
        • Nichols F.R.
        • Jacobs Jr., J.C.
        Volumetric damage to the femoral physis during double-bundle posterior cruciate ligament reconstruction: A magnetic resonance imaging computer modeling study.
        Arthroscopy. 2015; 31: 1102-1107
        • Kercher J.
        • Xerogeanes J.
        • Tannenbaum A.
        • Al-Hakim R.
        • Black J.C.
        • Zhao J.
        Anterior cruciate ligament reconstruction in the skeletally immature: An anatomical study utilizing 3-dimensional magnetic resonance imaging reconstructions.
        J Pediatr Orthop. 2009; 29: 124-129
        • Shea K.G.
        • Apel P.J.
        • Pfeiffer R.P.
        • Traughber P.D.
        The anatomy of the proximal tibia in pediatric and adolescent patients: Implications for ACL reconstruction and prevention of physeal arrest.
        Knee Surg Sports Traumatol Arthrosc. 2007; 15: 320-327
        • Shea K.G.
        • Belzer J.
        • Apel P.J.
        • Nilsson K.
        • Grimm N.L.
        • Pfeiffer R.P.
        Volumetric injury of the physis during single-bundle anterior cruciate ligament reconstruction in children: A 3-dimensional study using magnetic resonance imaging.
        Arthroscopy. 2009; 25: 1415-1422
        • Swami V.G.
        • Cheng-Baron J.
        • Hui C.
        • Thompson R.B.
        • Jaremko J.L.
        Reliability of 3D localisation of ACL attachments on MRI: Comparison using multi-planar 2D versus high-resolution 3D base sequences.
        Knee Surg Sports Traumatol Arthrosc. 2015; 23: 1206-1214
        • Davis D.L.
        • Almardawi R.
        • Mitchell J.W.
        Analysis of the tibial epiphysis in the skeletally immature knee using magnetic resonance imaging: An update of anatomic parameters pertinent to physeal-sparing anterior cruciate ligament reconstruction.
        Orthop J Sports Med. 2016; 4 (2325967116655313)
        • Swami V.G.
        • Mabee M.
        • Hui C.
        • Jaremko J.L.
        MRI anatomy of the tibial ACL attachment and proximal epiphysis in a large population of skeletally immature knees: Reference parameters for planning anatomic physeal-sparing ACL reconstruction.
        Am J sports Med. 2014; 42: 1644-1651
        • Marchwiany D.A.
        • Lee C.
        • Ghobrial P.
        • Lawley R.
        • Chudik S.C.
        All-epiphyseal physeal-sparing anterior cruciate ligament reconstructive surgery: A study of 3-dimensional modeling to characterize a safe and reproducible surgical approach.
        Arthrosc Sports Med Rehabil. 2020; 2: e435-e442
        • Xerogeanes J.W.
        • Hammond K.E.
        • Todd D.C.
        Anatomic landmarks utilized for physeal-sparing, anatomic anterior cruciate ligament reconstruction: An MRI-based study.
        J Bone Joint Surg Am. 2012; 94: 268-276