Advertisement

Augmentation of Anterolateral Structures of the Knee Causes Undesirable Tibiofemoral Cartilage Contact in Double-Bundle Anterior Cruciate Ligament Reconstruction—A Randomized In-Vivo Biomechanics Study

Published:September 09, 2021DOI:https://doi.org/10.1016/j.arthro.2021.08.037

      Purpose

      To analyze the in vivo tibiofemoral cartilage contact patterns in knees undergoing double-bundle anterior cruciate ligament reconstruction(DB-ACLR) with or without anterolateral structure augmentation (ALSA).

      Methods

      Twenty patients with an ACL-ruptured knee and a healthy contralateral side were included. Nine patients received an isolated DB-ACLR (DB-ACLR group), and 11 patients had a DB-ACLR with ALSA (DB+ALSA group). At 1-year follow-up, a combined computed tomography, magnetic resonance imaging, and dual fluoroscopy imaging system analysis was used to capture a single-legged lunge of both the operated and healthy contralateral side. Tibiofemoral contact points (CPs) of the medial and lateral compartments were compared. CP locations were expressed as anteroposterior (AP, +/–) and medial–lateral (ML, –/+) values according to the tibia.

      Results

      In the DB-ACLR knees, no significant differences were found in CPs when compared with the healthy contralateral knees (P ≥ .31). However, in the DB+ALSA knees, the CPs in the lateral compartment had a significantly more anterior (mean AP: operative, –2.8 mm, 95% confidence interval [CI] –5.0 to–0.7 vs healthy, –5.0 mm, 95% CI –6.7 to –3.2; P = .006) and lateral (mean ML: operative, 23.2 mm, 95% CI 21.9-24.5 vs healthy, 21.8 mm, 95% CI 20.2-23.3; P = .013) location. The CPs in the medial compartment were located significantly more posterior (mean AP: operative, –3.4, 95% CI –5.0 to –1.9 vs healthy, –1.3, 95% CI –2.6 to –0.1; P = .006) and lateral (mean ML: operative, –21.3, 95% CI –22.6 to –20.0 vs healthy, –22.6, 95% CI –24.2 to –21.0; P = .021).

      Conclusions

      DB-ACLR restored the tibiofemoral cartilage contact mechanics to near-normal values at 1-year follow-up. Adding the ALSA to the DB-ACLR resulted in significantly altered tibiofemoral cartilage contact locations in both the medial and lateral compartments.

      Clinical Relevance

      In DB-ACLR knees, the addition of an ALSA may be unfavorable as it caused significantly changed arthrokinematics.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hajizadeh M.
        • Hashemi Oskouei A.
        • Ghalichi F.
        • Sole G.
        Knee kinematics and joint moments during stair negotiation in participants with anterior cruciate ligament deficiency and reconstruction: A systematic review and meta-analysis.
        PM R. 2016; 8: 563-579.e1
        • Xu C.
        • Chen J.
        • Cho E.
        • Zhao J.
        The effect of combined anterolateral and anterior cruciate ligament reconstruction on reducing pivot shift rate and clinical outcomes: A meta-analysis.
        Arthroscopy. 2021; 37: 694-705
        • Hosseini A.
        • Van de Velde S.
        • Gill T.J.
        • Li G.
        Tibiofemoral cartilage contact biomechanics in patients after reconstruction of a ruptured anterior cruciate ligament.
        J Orthop Res. 2012; 30: 1781-1788
        • Cinque M.E.
        • Dornan G.J.
        • Chahla J.
        • Moatshe G.
        • LaPrade R.F.
        High rates of osteoarthritis develop after anterior cruciate ligament surgery: An analysis of 4108 patients.
        Am J Sports Med. 2018; 46: 2011-2019
        • Fu F.H.
        Double-bundle ACL reconstruction.
        Orthopedics. 2011; 34: 281-283
        • Chen H.
        • Chen B.
        • Tie K.
        • Fu Z.
        • Chen L.
        Single-bundle versus double-bundle autologous anterior cruciate ligament reconstruction: A meta-analysis of randomized controlled trials at 5-year minimum follow-up.
        J Orthop Surg Res. 2018; 13: 50
        • Mathew M.
        • Dhollander A.
        • Getgood A.
        Anterolateral ligament reconstruction or extra-articular tenodesis: Why and when?.
        Clin Sports Med. 2018; 37: 75-86
        • Sonnery-Cottet B.
        • Saithna A.
        • Cavalier M.
        • et al.
        Anterolateral ligament reconstruction is associated with significantly reduced ACL graft rupture rates at a minimum follow-up of 2 years: A prospective comparative study of 502 patients from the SANTI study group.
        Am J Sports Med. 2017; 45: 1547-1557
        • Sonnery-Cottet B.
        • Saithna A.
        • Blakeney W.G.
        • et al.
        Anterolateral ligament reconstruction protects the repaired medial meniscus: A comparative study of 383 anterior cruciate ligament reconstructions from the SANTI study group with a minimum follow-up of 2 years.
        Am J Sports Med. 2018; 46: 1819-1826
        • Sheean A.J.
        • Lian J.
        • Tisherman R.
        • et al.
        Augmentation of anatomic anterior cruciate ligament reconstruction with lateral extra-articular tenodesis does not significantly affect rotatory knee laxity: A time zero, in vivo kinematic analysis.
        Am J Sports Med. 2020; 48: 3495-3502
        • Schon J.M.
        • Moatshe G.
        • Brady A.W.
        • et al.
        Anatomic anterolateral ligament reconstruction of the knee leads to overconstraint at any fixation angle.
        Am J Sports Med. 2016; 44: 2546-2556
        • Van de Velde S.K.
        • Bingham J.T.
        • Hosseini A.
        • et al.
        Increased tibiofemoral cartilage contact deformation in patients with anterior cruciate ligament deficiency.
        Arthritis Rheum. 2009; 60: 3693-3702
        • Hoshino Y.
        • Fu F.H.
        • Irrgang J.J.
        • Tashman S.
        Can joint contact dynamics be restored by anterior cruciate ligament reconstruction?.
        Clin Orthop Relat Res. 2013; 471: 2924-2931
        • Chen J.
        • Xu C.
        • Cho E.
        • Huangfu X.
        • Zhao J.
        Reconstruction for chronic ACL tears with or without anterolateral structure augmentation in patients at high risk for clinical failure: A randomized clinical trial.
        J Bone Joint Surg Am. 2021; 103: 1482-1490
      1. Nishida K, Gale T, Chiba D, et al. The effect of lateral extra-articular tenodesis on in vivo cartilage contact in combined anterior cruciate ligament reconstruction [published online February 12, 2021]. Knee Surg Sports Traumatol Arthrosc. doi: 10.1007/s00167-021-06480-4.

        • Farrokhi S.
        • Voycheck C.A.
        • Klatt B.A.
        • Gustafson J.A.
        • Tashman S.
        • Fitzgerald G.K.
        Altered tibiofemoral joint contact mechanics and kinematics in patients with knee osteoarthritis and episodic complaints of joint instability.
        Clin Biomech (Bristol, Avon). 2014; 29: 629-635
        • Zhao J.
        Anatomic double-bundle transtibial anterior cruciate ligament reconstruction.
        Arthrosc Tech. 2021; 10: e683-e690
        • Zhao J.
        • Qiu J.
        • Chen J.
        • Xu J.
        Combined double-bundle anterior cruciate ligament reconstruction and anterior cruciate ligament-mimicking anterolateral structure reconstruction.
        Arthrosc Tech. 2020; 9: e1141-e1146
        • Getgood A.
        • Brown C.
        • Lording T.
        • et al.
        The anterolateral complex of the knee: Results from the International ALC Consensus Group Meeting.
        Knee Surg Sports Traumatol Arthrosc. 2019; 27: 166-176
        • Ariel de Lima D.
        • Helito C.P.
        • Lacerda de Lima L.
        • de Castro Silva D.
        • Costa Cavalcante M.L.
        • Dias Leite J.A.
        Anatomy of the anterolateral ligament of the knee: A systematic review.
        Arthroscopy. 2019; 35: 670-681
        • Zhao J.
        • Huangfu X.
        The biomechanical and clinical application of using the anterior half of the peroneus longus tendon as an autograft source.
        Am J Sports Med. 2012; 40: 662-671
        • Bernholt D.L.
        • Kennedy M.I.
        • Crawford M.D.
        • DePhillipo N.N.
        • LaPrade R.F.
        Combined anterior cruciate ligament reconstruction and lateral extra-articular tenodesis.
        Arthrosc Tech. 2019; 8: e855-e859
        • Lau B.C.
        • Rames J.
        • Belay E.
        • Riboh J.C.
        • Amendola A.
        • Lassiter T.
        Anterolateral complex reconstruction augmentation of anterior cruciate ligament reconstruction: Biomechanics, indications, techniques, and clinical outcomes.
        JBJS Rev. 2019; 7: e5
        • Briggs K.K.
        • Lysholm J.
        • Tegner Y.
        • Rodkey W.G.
        • Kocher M.S.
        • Steadman J.R.
        The reliability, validity, and responsiveness of the Lysholm score and Tegner activity scale for anterior cruciate ligament injuries of the knee: 25 years later.
        Am J Sports Med. 2009; 37: 890-897
        • Marom N.
        • Xiang W.
        • Heath M.
        • Boyle C.
        • Fabricant P.D.
        • Marx R.G.
        Time interval affects physical activity scores: A comparison of the Marx Activity Rating Scale and the Hospital for Special Surgery Pediatric Functional Activity Brief Scale.
        Knee Surg Sports Traumatol Arthrosc. 2020; 28: 2619-2625
        • Seo S.S.
        • Kim C.W.
        • Lee C.R.
        • et al.
        Effect of femoral tunnel position on stability and clinical outcomes after single-bundle anterior cruciate ligament reconstruction using the outside-in technique.
        Arthroscopy. 2019; 35: 1648-1655
        • Parkinson B.
        • Gogna R.
        • Robb C.
        • Thompson P.
        • Spalding T.
        Anatomic ACL reconstruction: The normal central tibial footprint position and a standardised technique for measuring tibial tunnel location on 3D CT.
        Knee Surg Sports Traumatol Arthrosc. 2017; 25: 1568-1575
        • Kai S.
        • Sato T.
        • Koga Y.
        • et al.
        Automatic construction of an anatomical coordinate system for three-dimensional bone models of the lower extremities—pelvis, femur, and tibia.
        J Biomech. 2014; 21: 1229-1233
        • Thorhauer E.
        • Tashman S.
        Validation of a method for combining biplanar radiography and magnetic resonance imaging to estimate knee cartilage contact.
        Med Eng Phys. 2015; 37: 937-947
        • Anderst W.
        • Zauel R.
        • Bishop J.
        • Demps E.
        • Tashman S.
        Validation of three-dimensional model-based tibio-femoral tracking during running.
        Med Eng Phys. 2009; 31: 10-16
        • Chen J.
        • Wang C.
        • Xu C.
        • et al.
        Effects of anterolateral structure augmentation on the in vivo kinematics of anterior cruciate ligament-reconstructed knees.
        Am J Sports Med. 2021; 49: 656-666
        • Hoshino Y.
        • Tashman S.
        Internal tibial rotation during in vivo, dynamic activity induces greater sliding of tibio-femoral joint contact on the medial compartment.
        Knee Surg Sports Traumatol Arthrosc. 2012; 20: 1268-1275
        • Chen E.
        • Amano K.
        • Pedoia V.
        • Souza R.B.
        • Ma C.B.
        • Li X.
        Longitudinal analysis of tibiofemoral cartilage contact area and position in ACL reconstructed patients.
        J Orthop Res. 2018; 36: 2718-2727
        • Harris J.D.
        • Brand J.C.
        • Cote M.P.
        • Faucett S.C.
        • Dhawan A.
        Research pearls: The significance of statistics and perils of pooling. Part 1: Clinical versus statistical significance.
        Arthroscopy. 2017; 33: 1102-1112
        • Pairot-de-Fontenay B.
        • Willy R.W.
        • Elias A.R.C.
        • Mizner R.L.
        • Dubé M.O.
        • Roy J.S.
        Running biomechanics in individuals with anterior cruciate ligament reconstruction: A systematic review.
        Sports Med. 2019; 49: 1411-1424
        • Van de Velde S.K.
        • Gill T.J.
        • Li G.
        Evaluation of kinematics of anterior cruciate ligament-deficient knees with use of advanced imaging techniques, three-dimensional modeling techniques, and robotics.
        J Bone Joint Surg Am. 2009; 91: 108-114
        • Castoldi M.
        • Magnussen R.A.
        • Gunst S.
        • et al.
        A randomized controlled trial of bone-patellar tendon-bone anterior cruciate ligament reconstruction with and without lateral extra-articular tenodesis: 19-year clinical and radiological follow-up.
        Am J Sports Med. 2020; 48: 1665-1672
        • Zaffagnini S.
        • Marcheggiani Muccioli G.M.
        • Grassi A.
        • et al.
        Over-the-top ACL reconstruction plus extra-articular lateral tenodesis with hamstring tendon grafts: Prospective evaluation with 20-year minimum follow-up.
        Am J Sports Med. 2017; 45: 3233-3242
        • Pernin J.
        • Verdonk P.
        • Si Selmi T.A.
        • Massin P.
        • Neyret P.
        Long-term follow-up of 24.5 years after intra-articular anterior cruciate ligament reconstruction with lateral extra-articular augmentation.
        Am J Sports Med. 2010; 38: 1094-1102
        • Tashman S.
        • Collon D.
        • Anderson K.
        • Kolowich P.
        • Anderst W.
        Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction.
        Am J Sports Med. 2004; 32: 975-983
        • Tang J.
        • Zhao J.
        Condyle-pinching double-bundle anterior cruciate ligament reconstruction.
        Arthrosc Tech. 2020; 9: e1109-e1114
        • Sonnery-Cottet B.
        • Daggett M.
        • Fayard J.M.
        • et al.
        Anterolateral Ligament Expert Group consensus paper on the management of internal rotation and instability of the anterior cruciate ligament–deficient knee.
        J Orthop Traumatol. 2017; 18: 91-106
        • DeFrate L.E.
        Effects of ACL graft placement on in vivo knee function and cartilage thickness distributions.
        J Orthop Res. 2017; 35: 1160-1170
        • Wong B.L.
        • Kim S.H.
        • Antonacci J.M.
        • McIlwraith C.W.
        • Sah R.L.
        Cartilage shear dynamics during tibio-femoral articulation: Effect of acute joint injury and tribosupplementation on synovial fluid lubrication.
        Osteoarthritis Cartilage. 2010; 18: 464-471