Advertisement

Addition of the Sartorius Tendon Improves Biomechanics of a Four-Strand Hamstring Anterior Cruciate Ligament Autograft

Published:October 26, 2021DOI:https://doi.org/10.1016/j.arthro.2021.10.015

      Purpose

      The purpose of this study was to quantify and compare the biomechanical properties and change in graft size when adding the sartorius tendon as a fifth strand to a four-strand ST-G hamstring autograft. Additionally, the sartorius tendon was tested individually to quantify its independent biomechanical properties.

      Methods

      Four-strand and five-strand hamstring tendon grafts were harvested from matched cadaveric knees (mean age: 81.6 ± 9.8). These matched grafts were biomechanically tested using a MTS servohydraulic test system at a rate of testing representative of physiologic tears. The mean diameter, cross-sectional area, and ultimate load to failure were quantified and compared with a one-sided, paired Student’s t-test. A P < .05 was considered statistically significant.

      Results

      The mean diameter of the five-strand graft was significantly larger than the four-strand graft (9.30 ± .84 mm vs 8.10 ± .42 mm; P = .002). The average ultimate load to failure of the five-strand graft was 65.3% higher than the four-strand graft (2984.05 ± 1085.11 N vs. 1805.03 ± 557.69 N; P = .009) and added 14.8% to the diameter of the four strand ST-G autograft.

      Conclusions

      The addition of the sartorius tendon to a four-strand hamstring autograft significantly increased ultimate load to failure by 65%, graft cross-sectional area by 32%, and graft diameter by 15% compared to a traditional four-strand ST-G autograft. This information can be helpful to surgeons who wish to improve the strength of a four-strand ST-G autograft and for undersized grafts as an alternative to allograft supplementation.

      Clinical Relevance

      The addition of the sartorius to the four-strand ST-G hamstring autograft significantly increases the ultimate load to failure and overall graft diameter, which can be particularly helpful in undersized autografts as an alternative to allograft supplementation.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mall N.A.
        • Chalmers P.N.
        • Moric M.
        • et al.
        Incidence and trends of anterior cruciate ligament reconstruction in the United States.
        Am J Sports Med. 2014; 42: 2363-2370
        • Spindler K.P.
        • Wright R.W.
        Clinical practice. Anterior cruciate ligament tear.
        N Engl J Med. 2008; 359: 2135-2142
        • Sanders T.L.
        • Maradit Kremers H.
        • Bryan A.J.
        • et al.
        Incidence of anterior cruciate ligament tears and reconstruction: A 21-year population-based study.
        Am J Sports Med. 2016; 44: 1502-1507
        • Kaeding C.C.
        • Aros B.
        • Pedroza A.
        • et al.
        Allograft versus autograft anterior cruciate ligament reconstruction: Predictors of failure from a MOON prospective longitudinal cohort.
        Sports Health. 2011; 3: 73-81
        • Scheffler S.U.
        • Schmidt T.
        • Gangéy I.
        • Dustmann M.
        • Unterhauser F.
        • Weiler A.
        Fresh-frozen free-tendon allografts versus autografts in anterior cruciate ligament reconstruction: Delayed remodeling and inferior mechanical function during long-term healing in sheep.
        Arthroscopy. 2008; 24: 448-458
        • Spindler K.P.
        • Kuhn J.E.
        • Freedman K.B.
        • Matthews C.E.
        • Dittus R.S.
        • Harrell F.E.
        Anterior cruciate ligament reconstruction autograft choice: bone-tendon-bone versus hamstring: Does it really matter? A systematic review.
        Am J Sports Med. 2004; 32: 1986-1995
        • Offerhaus C.
        • Albers M.
        • Nagai K.
        • et al.
        Individualized anterior cruciate ligament graft matching: In vivo comparison of cross-sectional areas of hamstring, patellar, and quadriceps tendon grafts and ACL insertion area.
        Am J Sports Med. 2018; 46: 2646-2652
        • Samuelsson K.
        • Andersson D.
        • Ahldén M.
        • Fu F.H.
        • Musahl V.
        • Karlsson J.
        Trends in surgeon preferences on anterior cruciate ligament reconstructive techniques.
        Clin Sports Med. 2013; 32: 111-126
        • Cooper D.E.
        • Deng X.H.
        • Burstein A.L.
        • Warren R.F.
        The strength of the central third patellar tendon graft. A biomechanical study.
        Am J Sports Med. 1993; 21 (discussion 823-4): 818-823
        • Hamner D.L.
        • Brown C.H.
        • Steiner M.E.
        • Hecker A.T.
        • Hayes W.C.
        Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: Biomechanical evaluation of the use of multiple strands and tensioning techniques.
        J Bone Joint Surg Am. 1999; 81: 549-557
        • Rowden N.J.
        • Sher D.
        • Rogers G.J.
        • Schindhelm K.
        Anterior cruciate ligament graft fixation. Initial comparison of patellar tendon and semitendinosus autografts in young fresh cadavers.
        Am J Sports Med. 1997; 25: 472-478
        • Tashiro T.
        • Kurosawa H.
        • Kawakami A.
        • Hikita A.
        • Fukui N.
        Influence of medial hamstring tendon harvest on knee flexor strength after anterior cruciate ligament reconstruction. A detailed evaluation with comparison of single- and double-tendon harvest.
        Am J Sports Med. 2003; 31: 522-529
        • Middleton K.K.
        • Hamilton T.
        • Irrgang J.J.
        • Karlsson J.
        • Harner C.D.
        • Fu F.H.
        Anatomic anterior cruciate ligament (ACL) reconstruction: a global perspective. Part 1.
        Knee Surg Sports Traumatol Arthrosc. 2014; 22: 1467-1482
        • Shani R.H.
        • Umpierez E.
        • Nasert M.
        • Hiza E.A.
        • Xerogeanes J.
        Biomechanical comparison of quadriceps and patellar tendon grafts in anterior cruciate ligament reconstruction.
        Arthroscopy. 2016; 32: 71-75
        • Moatshe G.
        • Floyd E.R.
        • Martin R.K.
        • Engebretsen L.
        • LaPrade R.F.
        Emerging topics in ACL graft selection: Best evidence for the use of quadriceps tendon graft.
        Oper Tech Sports Med. 2021; 29: 150835
        • Lund B.
        • Nielsen T.
        • Faunø P.
        • Christiansen S.E.
        • Lind M.
        Is quadriceps tendon a better graft choice than patellar tendon? a prospective randomized study.
        Arthroscopy. 2014; 30: 593-598
        • Riaz O.
        • Aqil A.
        • Mannan A.
        • et al.
        Quadriceps tendon-bone or patellar tendon-bone autografts when reconstructing the anterior cruciate ligament: A meta-analysis.
        Clin J Sport Med. 2018; 28: 316-324
        • Boniello M.R.
        • Schwingler P.M.
        • Bonner J.M.
        • Robinson S.P.
        • Cotter A.
        • Bonner K.F.
        Impact of hamstring graft diameter on tendon strength: A biomechanical study.
        Arthroscopy. 2015; 31: 1084-1090
        • Magnussen R.A.
        • Lawrence J.T.R.
        • West R.L.
        • Toth A.P.
        • Taylor D.C.
        • Garrett W.E.
        Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft.
        Arthroscopy. 2012; 28: 526-531
        • Darnley J.E.
        • Léger-St-Jean B.
        • Pedroza A.D.
        • Flanigan D.C.
        • Kaeding C.C.
        • Magnussen R.A.
        Anterior cruciate ligament reconstruction using a combination of autograft and allograft tendon: A MOON cohort study.
        Orthop J Sport Med. 2016; 4 (2325967116662249)
        • Xu H.
        • Dong J.
        • Xin D.
        • Zhang J.
        • Kang K.
        • Gao S.
        Second-look arthroscopic evaluation and clinical outcomes of anatomic anterior cruciate ligament reconstruction with autograft and hybrid graft: A retrospective study.
        Med Sci Monit. 2017; 23: 5564-5573
        • Krishna L.
        • Panjwani T.
        • Mok Y.R.
        • Lin Wong F.K.
        • Singh A.
        • Toh S.J.
        Use of the 5-strand hamstring autograft technique in increasing graft size in anterior cruciate ligament reconstruction.
        Arthroscopy. 2018; 34: 2633-2640
        • Prodromos C.
        • Joyce B.
        Five-strand hamstring anterior cruciate ligament reconstruction: Presentation of a new technique with better stability at 7- to 9-year follow up than 4 strand.
        Tech Orthop. 2005; 20: 192-193
        • Madaíl C.A.
        • Vaz M. de F.
        • Amaral P.M.
        • Consciência J.G.
        • Silva A.L.
        Quadruple semitendinosus graft construct with double cortical suspensory fixation for anterior cruciate ligament reconstruction: A biomechanical study.
        Sci Rep. 2018; 8: 12835
        • Nazari G.
        • Barton K.I.
        • Bryant D.
        • Getgood A.
        • Brown C.H.
        Five- and six-strand hamstring grafts consistently produce appropriate graft diameters for anterior cruciate ligament reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2021; 29: 2940-2947
        • Zhao J.
        • Huangfu X.
        Arthroscopic single-bundle posterior cruciate ligament reconstruction: Retrospective review of 4- versus 7-strand hamstring tendon graft.
        Knee. 2007; 14: 301-305
        • Urchek R.
        • Karas S.
        Biomechanical comparison of quadriceps and 6-strand hamstring tendon grafts in anterior cruciate ligament reconstruction.
        Orthop J Sport Med. 2019; 7 (2325967119879113)
        • Gudas R.
        • Rimkūnas A.
        • Staškūnas M.
        Large-diameter anterior cruciate ligament reconstruction technique with 8-strand semitendinosus and gracilis graft.
        Arthrosc Tech. 2021; 10: e981-e986
        • Colombet P.
        • Graveleau N.
        Minimally invasive anterior semitendinosus harvest: A technique to decrease saphenous nerve injury.
        Arthrosc Tech. 2016; 5: e139-e142
        • Rincón L.
        • Schatzmann L.
        • Brunner P.
        • et al.
        Design and evaluation of a cryogenic soft tissue fixation device—load tolerances and thermal aspects.
        J Biomech. 2001; 34: 393-397
        • Heard W.M.
        • Paller D.J.
        • Christino M.A.
        • et al.
        Effect of insertion of a single interference screw on the mechanical properties of porcine anterior cruciate ligament reconstruction grafts.
        Am J Orthop (Belle Mead NJ). 2013; 42: 168-172
        • Broadhead M.L.
        • Singla A.A.
        • Bertollo N.
        • Broe D.
        • Walsh W.R.
        A biomechanical comparison of 4-strand and 5-strand anterior cruciate ligament graft constructs.
        Orthop Rev (Pavia). 2017; 9: 6989
        • Schimoler P.J.
        • Braun D.T.
        • Miller M.C.
        • Akhavan S.
        Quadrupled hamstring graft strength as a function of clinical sizing.
        Arthroscopy. 2015; 31: 1091-1096
        • Joyner P.W.
        • Mills F.B.
        • Brotherton S.
        • et al.
        Blumensaat line as a prediction of native anterior cruciate ligament length.
        Orthop J Sport Med. 2020; 8 (2325967120943185)
        • Li G.
        • DeFrate L.E.
        • Sun H.
        • Gill T.J.
        In vivo elongation of the anterior cruciate ligament and posterior cruciate ligament during knee flexion.
        Am J Sports Med. 2004; 32: 1415-1420
        • Cone S.G.
        • Howe D.
        • Fisher M.B.
        Size and shape of the human anterior cruciate ligament and the impact of sex and skeletal growth: A systematic review.
        JBJS Rev. 2019; 7: e8
        • Harris N.L.
        • Smith D.A.
        • Lamoreaux L.
        • Purnell M.
        Central quadriceps tendon for anterior cruciate ligament reconstruction. Part I: Morphometric and biomechanical evaluation.
        Am J Sports Med. 1997; 25: 23-28
        • Butler D.L.
        • Noyes F.R.
        • Grood E.S.
        Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study.
        J Bone Joint Surg Am. 1980; 62: 259-270
        • Noyes F.R.
        • Butler D.L.
        • Grood E.S.
        • Zernicke R.F.
        • Hefzy M.S.
        Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions.
        J Bone Joint Surg Am. 1984; 66: 344-352
        • Sasaki N.
        • Farraro K.F.
        • Kim K.E.
        • Woo S.L.-Y.
        Biomechanical evaluation of the quadriceps tendon autograft for anterior cruciate ligament reconstruction: A cadaveric study.
        Am J Sports Med. 2014; 42: 723-730
        • Perkins C.A.
        • Busch M.T.
        • Christino M.
        • Herzog M.M.
        • Willimon S.C.
        Allograft augmentation of hamstring anterior cruciate ligament autografts is associated with increased graft failure in children and adolescents.
        Am J Sports Med. 2019; 47: 1576-1582
        • Wang H.-D.
        • Zhang H.
        • Wang T.-R.
        • Zhang W.-F.
        • Wang F.-S.
        • Zhang Y.-Z.
        Comparison of clinical outcomes after anterior cruciate ligament reconstruction with hamstring tendon autograft versus soft-tissue allograft: A meta-analysis of randomised controlled trials.
        Int J Surg. 2018; 56: 174-183
        • Attia A.K.
        • Nasef H.
        • ElSweify K.H.
        • Adam M.A.
        • AbuShaaban F.
        • Arun K.
        Failure rates of 5-strand and 6-strand vs quadrupled hamstring autograft ACL reconstruction: A comparative study of 413 patients with a minimum 2-year follow-up.
        Orthop J Sport Med. 2020; 8 (2325967120946326)
        • Tutkus V.
        • Kluonaitis K.
        • Silove S.
        • Tutkuviene J.
        ACL reconstruction using 5- or 6-strand hamstring autograft provides graft’s diameter bigger than 8 mm.
        Knee Surg Sports Traumatol Arthrosc. 2018; 26: 1349-1356
        • Ho S.W.L.
        • Tan T.J.L.
        • Lee K.T.
        Role of anthropometric data in the prediction of 4-stranded hamstring graft size in anterior cruciate ligament reconstruction.
        Acta Orthop Belg. 2016; 82: 72-77
        • Butler D.L.
        • Kay M.D.
        • Stouffer D.C.
        Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments.
        J Biomech. 1986; 19: 425-432
        • Noyes F.R.
        • Grood E.S.
        The strength of the anterior cruciate ligament in humans and Rhesus monkeys.
        J Bone Joint Surg Am. 1976; 58: 1074-1082
        • Stäubli H.U.
        • Schatzmann L.
        • Brunner P.
        • Rincón L.
        • Nolte L.P.
        Mechanical tensile properties of the quadriceps tendon and patellar ligament in young adults.
        Am J Sports Med. 1999; 27: 27-34
        • Wytrykowski K.
        • Swider P.
        • Reina N.
        • et al.
        Cadaveric study comparing the biomechanical properties of grafts used for knee anterolateral ligament reconstruction.
        Arthroscopy. 2016; 32: 2288-2294
        • Woo S.L.
        Mechanical properties of tendons and ligaments. I. Quasi-static and nonlinear viscoelastic properties.
        Biorheology. 1982; 19: 385-396
        • Kennedy J.C.
        • Hawkins R.J.
        • Willis R.B.
        • Danylchuck K.D.
        Tension studies of human knee ligaments. Yield point, ultimate failure, and disruption of the cruciate and tibial collateral ligaments.
        J Bone Joint Surg Am. 1976; 58: 350-355
        • Haupt E.
        • OKeefe K.J.
        • Clay T.B.
        • Kenney N.
        • Farmer K.W.
        Biomechanical properties of small-size hamstring autografts.
        Cureus. 2020; 12e8728