Infographic| Volume 38, ISSUE 1, P20-21, January 2022

Download started.


Superior Capsular Reconstruction: Proposed Biomechanical Advantages


      The intact rotator cuff provides dynamic stability for the glenohumeral joint through range of motion by compressing the humeral head to the center of the glenoid. Maintenance of articular congruity provides a stable fulcrum for the more forceful muscles of the shoulder girdle. Massive rotator cuff tears disrupt the concavity-compression mechanism and lead to unopposed superior pull of the deltoid. As a result, superior migration of the humerus, abutment of the acromion, and, in some cases, progression to cuff tear arthropathy occur. Arthroscopic superior capsular reconstruction has emerged as an effective treatment in select indications. Several potential biomechanical advantages to SCR have been described on the basis of cadaver studies. By tethering the greater tuberosity to the glenoid, superior migration is resisted, and the center of rotation is stabilized. The interpositional spacer effect describes reduced subacromial contact pressure, and the reduction is greater with thicker grafts. Side-to-side suturing of the graft to residual tendon and capsule achieves capsular continuity and may further improve the stabilizing function of the residual capsule and prevent medial-lateral elongation of the graft. Although these biomechanical principles overlap to some degree, their summation offers an explanation for the improved pain and function seen in patients who undergo superior capsular reconstruction.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Lobao M.H.
        • Melvani R.T.
        • Abbasi P.
        • Parks B.G.
        • Murthi A.M.
        Dermal allograft superior capsule reconstruction biomechanics and kinematics.
        J Shoulder Elbow Surg. 2021; 30: 2156-2165
        • Mihata T.
        • McGarry M.H.
        • Kahn T.
        • Goldberg I.
        • Neo M.
        • Lee T.Q.
        Biomechanical role of capsular continuity in superior capsule reconstruction for irreparable tears of the supraspinatus tendon.
        Am J Sports Med. 2016; 44: 1423-1430
        • Mihata T.
        • McGarry M.H.
        • Pirolo J.M.
        • Kinoshita M.
        • Lee T.Q.
        Superior capsule reconstruction to restore superior stability in irreparable rotator cuff tears: A biomechanical cadaveric study.
        Am J Sports Med. 2012; 40: 2248-2255
        • Rybalko D.
        • Bobko A.
        • Amirouche F.
        • et al.
        Biomechanical effects of superior capsular reconstruction in a rotator cuff-deficient shoulder: a cadaveric study.
        J Shoulder Elbow Surg. 2020; 29: 1959-1966
        • Smith T.J.
        • Gowd A.K.
        • Kunkel J.
        • Kaplin L.
        • Waterman B.R.
        Superior capsular reconstruction provides sufficient biomechanical outcomes for massive, irreparable rotator cuff tears: A systematic review.
        Arthroscopy. 2021; 37: 402-410