Advertisement

Meniscal Tears, Posterolateral and Posteromedial Corner Injuries, Increased Coronal Plane, and Increased Sagittal Plane Tibial Slope All Influence Anterior Cruciate Ligament–Related Knee Kinematics and Increase Forces on the Native and Reconstructed Anterior Cruciate Ligament: A Systematic Review of Cadaveric Studies

Published:December 06, 2021DOI:https://doi.org/10.1016/j.arthro.2021.11.044

      Purpose

      To obtain a comprehensive list of pathologies that cause increased anterior cruciate ligament (ACL) forces and pathologic knee kinematics to evaluate for in both primary and revision ACL reconstruction to decrease the risk of subsequent graft overload.

      Methods

      An electronic search was performed in the Embase and MEDLINE databases for the period between January 1, 1990, and December 10, 2020. All articles investigating medial and lateral meniscal injury, (postero)lateral corner injury, (postero)medial corner/medial collateral ligament injury, valgus alignment, varus alignment, and tibial slope in relation to ACL (graft) force and knee kinematics were included.

      Results

      Data of 43 studies were included. The studies reported that high-volume medial and lateral meniscectomies, peripheral meniscus tears, medial meniscus ramp tears, lateral meniscus root tears, posterolateral corner injuries, medial collateral ligament tears, increased tibial slope, and valgus and varus alignment were reported to have a significant impact on ACL (graft) force and related knee kinematics.

      Conclusions

      This systematic review on biomechanical cadaver studies provides a rationale to systematically identify and treat pathologies in ACL-injured knees, because when undiagnosed or left untreated, these specific concomitant pathologies could lead to ACL graft overload in both primary and revision ACL-reconstructed knees.

      Clinical Relevance

      it is necessary that orthopaedic surgeons who treat ACL-injured knees understand the surgically relevant biomechanical consequences of additional pathologies and use this knowledge to optimize treatment in ACL-injured patients.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bram J.T.
        • Magee L.C.
        • Mehta N.N.
        • Patel N.M.
        • Ganley T.J.
        Anterior cruciate ligament injury incidence in adolescent athletes: A systematic review and meta-analysis.
        Am J Sports Med. 2021; 49: 1962-1972https://doi.org/10.1177/0363546520959619
        • Gornitzky A.L.
        • Lott A.
        • Yellin J.L.
        • Fabricant P.D.
        • Lawrence J.T.
        • Ganley T.J.
        Sport-specific yearly risk and incidence of anterior cruciate ligament tears in high school athletes.
        Am J Sports Med. 2016; 44: 2716-2723https://doi.org/10.1177/0363546515617742
        • Sanders T.L.
        • Kremers H.M.
        • Bryan A.J.
        • et al.
        Incidence of anterior cruciate ligament tears and reconstruction.
        Am J Sports Med. 2016; 44: 1502-1507https://doi.org/10.1177/0363546516629944
        • Magnussen R.A.
        • Meschbach N.T.
        • Kaeding C.C.
        • Wright R.W.
        • Spindler K.P.
        ACL graft and contralateral ACL tear risk within ten years following reconstruction.
        JBJS Rev. 2015; 3https://doi.org/10.2106/jbjs.rvw.n.00052
        • Grassi A.
        • Kim C.
        • Muccioli G.M.M.
        • Zaffagnini S.
        • Amendola A.
        What is the mid-term failure rate of revision ACL reconstruction? A systematic review.
        Clin Orthop Relat Res. 2017; 475: 2484-2499https://doi.org/10.1007/s11999-017-5379-5
        • Wiggins A.J.
        • Grandhi R.K.
        • Schneider D.K.
        • Stanfield D.
        • Webster K.E.
        • Myer G.D.
        Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction.
        Am J Sports Med. 2016; 44: 1861-1876https://doi.org/10.1177/0363546515621554
        • Group T.M.
        • Cooper D.E.
        • Dunn W.R.
        • et al.
        Physiologic preoperative knee hyperextension is a predictor of failure in an anterior cruciate ligament revision cohort: A report from the MARS Group.
        Am J Sports Med. 2018; 46: 2836-2841https://doi.org/10.1177/0363546518777732
        • Group M.K.
        • Spindler K.P.
        • Huston L.J.
        • et al.
        Anterior cruciate ligament reconstruction in high school and college-aged athletes: Does autograft choice influence anterior cruciate ligament revision rates?.
        Am J Sports Med. 2019; 48: 298-309https://doi.org/10.1177/0363546519892991
        • Kaeding C.C.
        • Pedroza A.D.
        • Reinke E.K.
        • et al.
        Risk factors and predictors of subsequent ACL injury in either knee after ACL reconstruction.
        Am J Sports Med. 2015; 43: 1583-1590https://doi.org/10.1177/0363546515578836
        • Vermeijden H.D.
        • Yang X.A.
        • List J.P. van der
        • DiFelice G.S.
        • Rademakers M.V.
        • Kerkhoffs G.M.M.J.
        Trauma and femoral tunnel position are the most common failure modes of anterior cruciate ligament reconstruction: A systematic review.
        Knee Surg Sports Traumatol Arthrosc. 2020; 28: 3666-3675https://doi.org/10.1007/s00167-020-06160-9
        • Bates N.A.
        • McPherson A.L.
        • Rao M.B.
        • Myer G.D.
        • Hewett T.E.
        Characteristics of inpatient anterior cruciate ligament reconstructions and concomitant injuries.
        Knee Surg Sports Traumatology Arthrosc. 2016; 24: 2778-2786https://doi.org/10.1007/s00167-014-3478-3
        • Levy I.M.
        • Torzilli P.A.
        • Gould J.D.
        • Warren R.F.
        The effect of lateral meniscectomy on motion of the knee.
        J Bone Joint Surg. 1989; 71: 401-406https://doi.org/10.2106/00004623-198971030-00014
        • Levy I.M.
        • Torzilli P.A.
        • Warren R.F.
        The effect of medial meniscectomy on anterior-posterior motion of the knee.
        J Bone Joint Surg. 1982; 64: 883-888https://doi.org/10.2106/00004623-198264060-00011
        • Shoemaker S.C.
        • Markolf K.L.
        Effects of joint load on the stiffness and laxity of ligament-deficient knees. An in vitro study of the anterior cruciate and medial collateral ligaments.
        J Bone Joint Surg. 1985; 67: 136-146https://doi.org/10.2106/00004623-198567010-00017
        • Gollehon D.L.
        • Torzilli P.A.
        • Warren R.F.
        The role of the posterolateral and cruciate ligaments in the stability of the human knee. A biomechanical study.
        J Bone Joint Surg. 1987; 69: 233-242https://doi.org/10.2106/00004623-198769020-00010
        • Mehl J.
        • Otto A.
        • Kia C.
        • et al.
        Osseous valgus alignment and posteromedial ligament complex deficiency lead to increased ACL graft forces.
        Knee Surg Sports Traumatol Arthrosc. 2020; 28: 1119-1129https://doi.org/10.1007/s00167-019-05770-2
        • Imhoff F.B.
        • Comer B.
        • Obopilwe E.
        • Beitzel K.
        • Arciero R.A.
        • Mehl J.T.
        Effect of slope and varus correction high tibial osteotomy in the ACL-deficient and ACL-reconstructed knee on kinematics and ACL graft force: A biomechanical analysis.
        Am J Sports Med. 2020; 49: 410-416https://doi.org/10.1177/0363546520976147
        • van de Pol G.J.
        • Arnold M.P.
        • Verdonschot N.
        • van Kampen A.
        Varus alignment leads to increased forces in the anterior cruciate ligament.
        Am J Sports Med. 2009; 37: 481-487https://doi.org/10.1177/0363546508326715
        • Simon R.A.
        • Everhart J.S.
        • Nagaraja H.N.
        • Chaudhari A.M.
        A case-control study of anterior cruciate ligament volume, tibial plateau slopes and intercondylar notch dimensions in ACL-injured knees.
        J Biomech. 2010; 43: 1702-1707https://doi.org/10.1016/j.jbiomech.2010.02.033
        • Zeng C.
        • Yang T.
        • Wu S.
        • et al.
        Is posterior tibial slope associated with noncontact anterior cruciate ligament injury?.
        Knee Surg Sports Traumatol Arthrosc. 2016; 24: 830-837https://doi.org/10.1007/s00167-014-3382-x
        • Dean R.S.
        • Larson C.M.
        • Waterman B.R.
        Posterior tibial slope: Understand bony morphology to protect knee cruciate ligament grafts.
        Arthroscopy. 2021; 37: 2029-2030https://doi.org/10.1016/j.arthro.2021.05.006
        • Terauchi M.
        • Hatayama K.
        • Yanagisawa S.
        • Saito K.
        • Takagishi K.
        Sagittal alignment of the knee and its relationship to noncontact anterior cruciate ligament injuries.
        Am J Sports Med. 2011; 39: 1090-1094https://doi.org/10.1177/0363546510393305
        • Ziegler C.G.
        • DePhillipo N.N.
        • Kennedy M.I.
        • Dekker T.J.
        • Dornan G.J.
        • LaPrade R.F.
        Beighton Score, tibial slope, tibial subluxation, quadriceps circumference difference, and family history are risk factors for anterior cruciate ligament graft failure: A retrospective comparison of primary and revision anterior cruciate ligament reconstructions.
        Arthroscopy. 2021; 37: 195-205https://doi.org/10.1016/j.arthro.2020.08.031
        • Wilke J.
        • Krause F.
        • Niederer D.
        • et al.
        Appraising the methodological quality of cadaveric studies: Validation of the QUACS scale.
        J Anat. 2015; 226: 440-446https://doi.org/10.1111/joa.12292
        • Allen C.R.
        • Wong E.K.
        • Livesay G.A.
        • Sakane M.
        • Fu F.H.
        • Woo S.L.
        Importance of the medial meniscus in the anterior cruciate ligament-deficient knee.
        J Orthop Res. 2000; 18: 109-115https://doi.org/10.1002/jor.1100180116
        • Papageorgiou C.D.
        • Gil J.E.
        • Kanamori A.
        • Fenwick J.A.
        • Woo S.L.-Y.
        • Fu F.H.
        The biomechanical interdependence between the anterior cruciate ligament replacement graft and the medial meniscus∗.
        Am J Sports Med. 2001; 29: 226-231https://doi.org/10.1177/03635465010290021801
        • Seon J.K.
        • Gadikota H.R.
        • Kozanek M.
        • Oh L.S.
        • Gill T.J.
        • Li G.
        The effect of anterior cruciate ligament reconstruction on kinematics of the knee with combined anterior cruciate ligament injury and subtotal medial meniscectomy: An in vitro robotic investigation.
        Arthroscopy. 2009; 25: 123-130https://doi.org/10.1016/j.arthro.2008.09.020
        • Spang J.T.
        • Dang A.B.C.
        • Mazzocca A.
        • et al.
        The effect of medial meniscectomy and meniscal allograft transplantation on knee and anterior cruciate ligament biomechanics.
        Arthroscopy. 2010; 26: 192-201https://doi.org/10.1016/j.arthro.2009.11.008
        • Musahl V.
        • Citak M.
        • O’Loughlin P.F.
        • Choi D.
        • Bedi A.
        • Pearle A.D.
        The effect of medial versus lateral meniscectomy on the stability of the anterior cruciate ligament-deficient knee.
        Am J Sports Med. 2010; 38: 1591-1597https://doi.org/10.1177/0363546510364402
        • Ahn J.H.
        • Bae T.S.
        • Kang K.-S.
        • Kang S.Y.
        • Lee S.H.
        Longitudinal tear of the medial meniscus posterior horn in the anterior cruciate ligament–deficient knee significantly influences anterior stability.
        Am J Sports Med. 2011; 39: 2187-2193https://doi.org/10.1177/0363546511416597
        • McCulloch P.
        • Shybut T.
        • Isamaily S.
        • et al.
        The effect of progressive degrees of medial meniscal loss on stability after anterior cruciate ligament reconstruction.
        J Knee Surg. 2013; 26: 363-370https://doi.org/10.1055/s-0033-1341578
        • Lorbach O.
        • Kieb M.
        • Domnick C.
        • et al.
        Biomechanical evaluation of knee kinematics after anatomic single-and anatomic double-bundle ACL reconstructions with medial meniscal repair.
        Knee Surg Sports Traumatol Arthrosc. 2015; 23: 2734-2741https://doi.org/10.1007/s00167-014-3071-9
        • Lorbach O.
        • Kieb M.
        • Herbort M.
        • Weyers I.
        • Raschke M.
        • Engelhardt M.
        The influence of the medial meniscus in different conditions on anterior tibial translation in the anterior cruciate deficient knee.
        Int Orthop. 2015; 39: 681-687https://doi.org/10.1007/s00264-014-2581-x
        • Smith P.
        • Humpherys J.
        • Stannard J.
        • Cook J.
        Impact of medial meniscotibial ligament disruption compared to peripheral medial meniscal tear on knee biomechanics.
        J Knee Surg. 2021; 34: 784-792https://doi.org/10.1055/s-0039-3402483
        • Ahn J.H.
        • Koh I.J.
        • McGarry M.H.
        • et al.
        Knee laxity in anterolateral complex injuries versus medial meniscus posterior horn injuries in anterior cruciate ligament injured knees: A cadaveric study.
        Orthop Traumatol Surg Res. 2020; 106: 945-955https://doi.org/10.1016/j.otsr.2020.03.025
        • Peltier A.
        • Lording T.
        • Maubisson L.
        • Ballis R.
        • Neyret P.
        • Lustig S.
        The role of the meniscotibial ligament in posteromedial rotational knee stability.
        Knee Surg Sports Traumatol Arthrosc. 2015; 23: 2967-2973https://doi.org/10.1007/s00167-015-3751-0
        • Stephen J.M.
        • Halewood C.
        • Kittl C.
        • Bollen S.R.
        • Williams A.
        • Amis A.A.
        Posteromedial meniscocapsular lesions increase tibiofemoral joint laxity with anterior cruciate ligament deficiency, and their repair reduces laxity.
        Am J Sports Med. 2016; 44: 400-408https://doi.org/10.1177/0363546515617454
        • DePhillipo N.N.
        • Moatshe G.
        • Brady A.
        • et al.
        Effect of meniscocapsular and meniscotibial lesions in ACL-deficient and ACL-reconstructed knees: A biomechanical study.
        Am J Sports Med. 2018; 46: 2422-2431https://doi.org/10.1177/0363546518774315
        • Naendrup J.-H.
        • Pfeiffer T.R.
        • Chan C.
        • et al.
        Effect of meniscal ramp lesion repair on knee kinematics, bony contact forces, and in situ forces in the anterior cruciate ligament.
        Am J Sports Med. 2019; 47: 3195-3202https://doi.org/10.1177/0363546519872964
        • Bollen S.R.
        Posteromedial meniscocapsular injury associated with rupture of the anterior cruciate ligament.
        Bone Joint J. 2010; 92-B: 222-223https://doi.org/10.1302/0301-620x.92b2.22974
        • Tang X.
        • Marshall B.
        • Wang J.H.
        • et al.
        Partial meniscectomy does not affect the biomechanics of anterior cruciate ligament reconstructed knee with a lateral posterior meniscal root tear.
        Knee Surg Sports Traumatol Arthrosc. 2020; 28: 3481-3487https://doi.org/10.1007/s00167-020-06209-9
        • Shybut T.B.
        • Vega C.E.
        • Haddad J.
        • et al.
        Effect of lateral meniscal root tear on the stability of the anterior cruciate ligament–deficient knee.
        Am J Sports Med. 2015; 43: 905-911https://doi.org/10.1177/0363546514563910
        • Frank J.M.
        • Moatshe G.
        • Brady A.W.
        • et al.
        Lateral meniscus posterior root and meniscofemoral ligaments as stabilizing structures in the ACL-deficient knee: A biomechanical study.
        Orthop J Sports Med. 2017; 5 (2325967117695756)https://doi.org/10.1177/2325967117695756
        • Tang X.
        • Marshall B.
        • Wang J.H.
        • et al.
        Lateral meniscal posterior root repair with anterior cruciate ligament reconstruction better restores knee stability.
        Am J Sports Med. 2019; 47: 59-65https://doi.org/10.1177/0363546518808004
        • Forkel P.
        • Deimling C. von
        • Lacheta L.
        • et al.
        Repair of the lateral posterior meniscal root improves stability in an ACL-deficient knee.
        Knee Surg Sports Traumatol Arthrosc. 2018; 26: 2302-2309https://doi.org/10.1007/s00167-018-4949-8
        • Markolf K.L.
        • Wascher D.C.
        • Finerman G.A.
        Direct in vitro measurement of forces in the cruciate ligaments. Part II: The effect of section of the posterolateral structures.
        J Bone Joint Surg. 1993; 75: 387-394https://doi.org/10.2106/00004623-199303000-00010
        • Wroble R.R.
        • Grood E.S.
        • Cummings J.S.
        • Henderson J.M.
        • Noyes F.R.
        The role of the lateral extraarticular restraints in the anterior cruciate ligament-deficient knee.
        Am J Sports Med. 1993; 21: 257-263https://doi.org/10.1177/036354659302100216
        • Bonanzinga T.
        • Signorelli C.
        • Lopomo N.
        • et al.
        Biomechanical effect of posterolateral corner sectioning after ACL injury and reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2015; 23: 2918-2924https://doi.org/10.1007/s00167-015-3696-3
        • Gadikota H.R.
        • Seon J.K.
        • Wu J.-L.
        • Gill T.J.
        • Li G.
        The effect of isolated popliteus tendon complex injury on graft force in anterior cruciate ligament reconstructed knees.
        Int Orthop. 2011; 35: 1403-1408https://doi.org/10.1007/s00264-010-1118-1
        • Zantop T.
        • Schumacher T.
        • Diermann N.
        • Schanz S.
        • Raschke M.J.
        • Petersen W.
        Anterolateral rotational knee instability: Role of posterolateral structures.
        Arch Orthop Trauma Surg. 2007; 127: 743-752https://doi.org/10.1007/s00402-006-0241-3
        • LaPrade R.F.
        • Resig S.
        • Wentorf F.
        • Lewis J.L.
        The effects of grade III posterolateral knee complex injuries on anterior cruciate ligament graft force.
        Am J Sports Med. 1999; 27: 469-475https://doi.org/10.1177/03635465990270041101
        • Veltri D.M.
        • Deng X.-H.
        • Torzilli P.A.
        • Warren R.F.
        • Maynard M.J.
        The role of the cruciate and posterolateral ligaments in stability of the knee.
        Am J Sports Med. 1995; 23: 436-443https://doi.org/10.1177/036354659502300411
        • Sakane M.
        • Livesay G.A.
        • Fox R.J.
        • Rudy T.W.
        • Runco T.J.
        • Woo S.L.-Y.
        Relative contribution of the ACL, MCL, and bony contact to the anterior stability of the knee.
        Knee Surg Sports Traumatol Arthrosc. 1999; 7: 93-97https://doi.org/10.1007/s001670050128
        • Mazzocca A.D.
        • Nissen C.W.
        • Geary M.
        • Adams D.J.
        Valgus medial collateral ligament rupture causes concomitant loading and damage of the anterior cruciate ligament.
        J Knee Surg. 2003; 16: 148-151
        • Shapiro M.S.
        • Markolf K.L.
        • Finerman G.A.
        • Mitchell P.W.
        The effect of section of the medial collateral ligament on force generated in the anterior cruciate ligament.
        J Bone Joint Surg Am. 1991; 73: 248-256
        • Battaglia M.J.
        • Lenhoff M.W.
        • Ehteshami J.R.
        • et al.
        Medial collateral ligament injuries and subsequent load on the anterior cruciate ligament.
        Am J Sports Med. 2009; 37: 305-311https://doi.org/10.1177/0363546508324969
        • Martineau P.A.
        • Fening S.D.
        • Miniaci A.
        Anterior opening wedge high tibial osteotomy: The effect of increasing posterior tibial slope on ligament strain.
        Can J Surg. 2010; 53: 261-267
        • Giffin J.R.
        • Vogrin T.M.
        • Zantop T.
        • Woo S.L.-Y.
        • Harner C.D.
        Effects of increasing tibial slope on the biomechanics of the knee.
        Am J Sports Med. 2004; 32: 376-382https://doi.org/10.1177/0363546503258880
        • Fening S.
        • Kovacic J.
        • Kambic H.
        • McLean S.
        • Scott J.
        • Miniaci A.
        The effects of modified posterior tibial slope on anterior cruciate ligament strain and knee kinematics? A human cadaveric study.
        J Knee Surg. 2008; 21: 205-211https://doi.org/10.1055/s-0030-1247820
        • Voos J.E.
        • Suero E.M.
        • Citak M.
        • et al.
        Effect of tibial slope on the stability of the anterior cruciate ligament–deficient knee.
        Knee Surg Sports Traumatol Arthrosc. 2012; 20: 1626-1631https://doi.org/10.1007/s00167-011-1823-3
        • Nelitz M.
        • Seitz A.M.
        • Bauer J.
        • Reichel H.
        • Ignatius A.
        • Dürselen L.
        Increasing posterior tibial slope does not raise anterior cruciate ligament strain but decreases tibial rotation ability.
        Clin Biomech. 2013; 28: 285-290https://doi.org/10.1016/j.clinbiomech.2013.01.011
        • Yamaguchi K.T.
        • Cheung E.C.
        • Markolf K.L.
        • et al.
        Effects of anterior closing wedge tibial osteotomy on anterior cruciate ligament force and knee kinematics.
        Am J Sports Med. 2018; 46: 370-377https://doi.org/10.1177/0363546517736767
        • Bernhardson A.S.
        • Aman Z.S.
        • Dornan G.J.
        • et al.
        Tibial slope and its effect on force in anterior cruciate ligament grafts: Anterior cruciate ligament force increases linearly as posterior tibial slope increases.
        Am J Sports Med. 2019; 47: 296-302https://doi.org/10.1177/0363546518820302
        • Samuelsen B.T.
        • Aman Z.S.
        • Kennedy M.I.
        • et al.
        Posterior medial meniscus root tears potentiate the effect of increased tibial slope on anterior cruciate ligament graft forces.
        Am J Sports Med. 2019; 48: 334-340https://doi.org/10.1177/0363546519889628
        • Imhoff F.B.
        • Mehl J.
        • Comer B.J.
        • et al.
        Slope-reducing tibial osteotomy decreases ACL-graft forces and anterior tibial translation under axial load.
        Knee Surg Sports Traumatol Arthrosc. 2019; 27: 3381-3389https://doi.org/10.1007/s00167-019-05360-2
        • DePhillipo N.N.
        • Moatshe G.
        • Chahla J.
        • et al.
        Quantitative and qualitative assessment of the posterior medial meniscus anatomy: Defining meniscal ramp lesions.
        Am J Sports Med. 2019; 47: 372-378https://doi.org/10.1177/0363546518814258