Advertisement

An Injectable Containing Morphine, Ropivacaine, Epinephrine, and Ketorolac Is Not Cytotoxic to Articular Cartilage Explants From Degenerative Knees

Published:December 21, 2021DOI:https://doi.org/10.1016/j.arthro.2021.12.019

      Purpose

      The purpose of this study was to determine the effects of a multidrug injectate containing morphine, ropivacaine, epinephrine, and ketorolac, commonly referred to as the “Orthococktail,” on cartilage tissue viability and metabolic responses using an established in vitro model.

      Methods

      With institutional review board approval and informed patient consent, tissues normally discarded after total knee arthroplasty (TKA) were recovered. Full-thickness cartilage explants (n = 72, Outerbridge grade 1 to 3) were created and bisected. Paired explant halves were treated with either 1 mL Orthococktail or 1 mL of saline and cultured for 8 hours at 37°C, with 0.5 mL of the treatment being removed and replaced with tissue culture media every hour. Explants were cultured for 6 days, and media were changed and collected on days 3 and 6. After day 6, tissues were processed for cell viability, weighed, and processed for histologic grading. Outcome measures were compared for significant differences between treated and untreated samples.

      Results

      There were no significant differences in cartilage viability between control and Orthococktail-treated samples across a spectrum of cartilage pathologies. Orthococktail treatment consistently resulted in a significant decrease in the release of PGE2, MCP-1, MMP-7, and MMP-8 on day 3 of culture and PGE2, MMP-3, MMP-7, and MMP-8 on day 6 of culture, compared with saline controls.

      Conclusion

      The results of the present study indicate that an Orthococktail injection composed of morphine, ropivacaine, epinephrine, and ketorolac is associated with a transient decrease in degradative and inflammatory mediators produced by more severely affected articular cartilage and may mitigate perioperative joint pain such that postoperative narcotic drug use could be reduced.

      Clinical Relevance

      The Orthococktail solution used in this study may be a safe intraoperative, intra-articular injection option for patients undergoing joint arthroplasty and other joint preservation surgical procedures.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Motififard M.
        • Omidian A.
        • Badiei S.
        Pre-emptive injection of peri-articular-multimodal drug for postoperative pain management in total knee arthroplasty: A double-blind randomized clinical trial.
        Int Orthop. 2017; 41: 939-947
        • Andersen L.Ø.
        • Husted H.
        • Kristensen B.
        • Otte K.
        • Gaarn-Larsen L.
        • Kehlet H.
        Analgesic efficacy of intracapsular and intra-articular local anaesthesia for knee arthroplasty.
        Anaesthesia. 2010; 65: 904-912
        • Snyder M.A.
        • Scheuerman C.M.
        • Gregg J.L.
        • Ruhnke C.J.
        • Eten K.
        Improving total knee arthroplasty perioperative pain management using a periarticular injection with bupivacaine liposomal suspension.
        Arthroplasty Today. 2016; 2: 37-42
        • Song M.H.
        • Kim B.H.
        • Ahn S.J.
        • et al.
        Peri-articular injections of local anaesthesia can replace patient-controlled analgesia after total knee arthroplasty: A randomised controlled study.
        Int Orthop. 2016; 40: 295-299
        • Tsukada S.
        • Wakui M.
        • Hoshino A.
        The impact of including corticosteroid in a periarticular injection for pain control after total knee arthroplasty: A double-blind randomised controlled trial.
        Bone Joint J. 2016; 98: 194-200
        • Pang H.N.
        • Lo N.N.
        • Yang K.Y.
        • Chong H.C.
        • Yeo S.J.
        Peri-articular steroid injection improves the outcome after unicondylar knee replacement: A prospective, randomised controlled trial with a two-year follow-up.
        J Bone Joint Surg Br. 2008; 90: 738-744
        • Chia S.K.
        • Wernecke G.C.
        • Harris I.A.
        • Bohm M.T.
        • Chen D.B.
        • MacDessi S.J.
        Peri-articular steroid injection in total knee arthroplasty: A prospective, double blinded, randomized controlled trial.
        J Arthroplasty. 2013; 28: 620-623
        • Chen Y.
        • Zhang Y.
        • Zhu Y.
        • Fu P.
        Efficacy and safety of an intra-operative intra-articular magnesium/ropivacaine injection for pain control following total knee arthroplasty.
        J Int Med Res. 2012; 40: 2032-2040
        • Pereira L.
        • Kerr J.
        • Jolles B.
        Intra-articular steroid injection for osteoarthritis of the hip prior to total hip arthroplasty: Is it safe? A systematic review.
        Bone Joint J. 2016; 98: 1027-1035
        • Marsland D.
        • Mumith A.
        • Barlow I.W.
        Systematic review: The safety of intra-articular corticosteroid injection prior to total knee arthroplasty.
        Knee. 2014; 21: 6-11
        • Ng Y.C.S.
        • Lo N.N.
        • Yang K.Y.
        • Chia S.L.
        • Chong H.C.
        • Yeo S.J.
        Effects of periarticular steroid injection on knee function and the inflammatory response following unicondylar knee arthroplasty.
        Knee Surg Sports Traumatol Arthrosc. 2011; 19: 60-65
        • Farkas B.
        • Kvell K.
        • Czömpöly T.
        • Illés T.
        • Bárdos T.
        Increased chondrocyte death after steroid and local anesthetic combination.
        Clin Orthop Relat Res. 2010; 468: 3112-3120
        • Nakazawa F.
        • Matsuno H.
        • Yudoh K.
        • Watanabe Y.
        • Katayama R.
        • Kimura T.
        Corticosteroid treatment induces chondrocyte apoptosis in an experimental arthritis model and in chondrocyte cultures.
        Clin Exp Rheumatol. 2002; 20: 773-782
        • Sherman S.L.
        • Khazai R.S.
        • James C.H.
        • Stoker A.M.
        • Flood D.L.
        • Cook J.L.
        In vitro toxicity of local anesthetics and corticosteroids on chondrocyte and synoviocyte viability and metabolism.
        Cartilage. 2015; 6: 233-240
        • Anz A.
        • Smith M.J.
        • Stoker A.
        • et al.
        The effect of bupivacaine and morphine in a coculture model of diarthrodial joints.
        Arthroscopy. 2009; 25: 225-231
        • Nair V.S.
        • Radhamony N.G.
        • Rajendra R.
        • Mishra R.
        Effectiveness of intraoperative periarticular cocktail injection for pain control and knee motion recovery after total knee replacement.
        Arthroplasty Today. 2019; 5: 320-324
        • Ng F.Y.
        • Ng J.K.F.
        • Chiu K.Y.
        • Yan C.H.
        • Chan C.W.
        Multimodal periarticular injection vs continuous femoral nerve block after total knee arthroplasty: A prospective, crossover, randomized clinical trial.
        J Arthroplasty. 2012; 27: 1234-1238
        • Fu P.
        • Wu Y.
        • Wu H.
        • Li X.
        • Qian Q.
        • Zhu Y.
        Efficacy of intra-articular cocktail analgesic injection in total knee arthroplasty—A randomized controlled trial.
        Knee. 2009; 16: 280-284
        • Fajardo M.
        • Collins J.
        • Landa J.
        • Adler E.
        • Meere P.
        • Di Cesare P.E.
        Effect of a perioperative intra-articular injection on pain control and early range of motion following bilateral TKA.
        Orthopedics. 2011; 34: e33-e36
        • Breu A.
        • Rosenmeier K.
        • Kujat R.
        • Angele P.
        • Zink W.
        The cytotoxicity of bupivacaine, ropivacaine, and mepivacaine on human chondrocytes and cartilage.
        Anesth Analg. 2013; 117: 514-522
        • Chu C.R.
        • Izzo N.J.
        • Papas N.E.
        • Fu F.H.
        In vitro exposure to 0.5% bupivacaine is cytotoxic to bovine articular chondrocytes.
        Arthroscopy. 2006; 22: 693-699
        • Sukur E.
        • Kucukdurmaz F.
        Comparison of cytotoxic effects of intra-articular use of tranexamic acid versus epinephrine on rat cartilage.
        Med Sci Monit Int Med J Exp Clin Res. 2018; 24: 1166
        • Piper S.L.
        • Kim H.T.
        Comparison of ropivacaine and bupivacaine toxicity in human articular chondrocytes.
        J Bone Joint Surg Am. 2008; 90: 986-991
        • Grishko V.
        • Xu M.
        • Wilson G.
        • Pearsall I.V.A.W.
        Apoptosis and mitochondrial dysfunction in human chondrocytes following exposure to lidocaine, bupivacaine, and ropivacaine.
        J Bone Joint Surg Am. 2010; 92: 609-618
        • Abrams G.D.
        • Chang W.
        • Dragoo J.L.
        In vitro chondrotoxicity of nonsteroidal anti-inflammatory drugs and opioid medications.
        Am J Sports Med. 2017; 45: 3345-3350
        • Dragoo J.L.
        • Korotkova T.
        • Kim H.J.
        • Jagadish A.
        Chondrotoxicity of low pH, epinephrine, and preservatives found in local anesthetics containing epinephrine.
        Am J Sports Med. 2010; 38: 1154-1159
        • Jayaram P.
        • Kennedy D.J.
        • Yeh P.
        • Dragoo J.
        Chondrotoxic effects of local anesthetics on human knee articular cartilage: A systematic review.
        PM R. 2019; 11: 379-400
        • Poole A.R.
        • Guilak F.
        • Abramson S.B.
        Etiopathogenesis of osteoarthritis.
        Osteoarthr Diagn Medsurg Manag. 2007; 4: 27-49
        • Ganguly K.
        • McRury I.D.
        • Goodwin P.M.
        • Morgan R.E.
        • Augé W K.
        Native chondrocyte viability during cartilage lesion progression: normal to surface fibrillation.
        Cartilage. 2010; 1: 306-311
        • Stoker A.M.
        • Cook J.L.
        • Kuroki K.
        • Fox D.B.
        Site-specific analysis of gene expression in early osteoarthritis using the Pond-Nuki model in dogs.
        J Orthop Surg. 2006; 1: 8
        • Werner N.C.
        • Stoker A.M.
        • Bozynski C.C.
        • Keeney J.A.
        • Cook J.L.
        Characterizing correlations among disease severity measures in osteochondral tissues from osteoarthritic knees.
        J Orthop Res. Published online. 2020;
        • Rexwinkle J.T.
        • Werner N.C.
        • Stoker A.M.
        • Salim M.
        • Pfeiffer F.M.
        Investigating the relationship between proteomic, compositional, and histologic biomarkers and cartilage biomechanics using artificial neural networks.
        J Biomech. 2018; 80: 136-143
        • Sato T.
        • Konomi K.
        • Yamasaki S.
        • et al.
        Comparative analysis of gene expression profiles in intact and damaged regions of human osteoarthritic cartilage.
        Arthritis Rheum. 2006; 54: 808-817
        • Wei L.
        • Fleming B.C.
        • Sun X.
        • et al.
        Comparison of differential biomarkers of osteoarthritis with and without posttraumatic injury in the Hartley guinea pig model.
        J Orthop Res. 2010; 28: 900-906
        • Geyer M.
        • Grässel S.
        • Straub R.
        • et al.
        Differential transcriptome analysis of intraarticular lesional vs intact cartilage reveals new candidate genes in osteoarthritis pathophysiology.
        Osteoarthritis Cartilage. 2009; 17: 328-335
        • Tetlow L.C.
        • Adlam D.J.
        • Woolley D.E.
        Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes.
        Arthritis Rheum. 2001; 44: 585-594
        • Shlopov B.V.
        • Lie W.R.
        • Mainardi C.L.
        • Cole A.A.
        • Chubinskaya S.
        • Hasty K.A.
        Osteoarthritic lesions. Involvement of three different collagenases.
        Arthritis Rheum. 1997; 40: 2065-2074
        • Aigner T.
        • Schmitz N.
        Pathogenesis and pathology of osteoarthritis.
        Rheumatology. 2011; 414: 1741-1759
        • Farndale R.W.
        • Sayers C.A.
        • Barrett A.J.
        A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures.
        Connect Tissue Res. 1982; 9: 247-248
        • Larson C.M.
        • Kelley S.S.
        • Blackwood A.D.
        • Banes A.J.
        • Lee G.M.
        Retention of the native chondrocyte pericellular matrix results in significantly improved matrix production.
        Matrix Biol. 2002; 21: 349-359
        • Samvelyan H.J.
        • Hughes D.
        • Stevens C.
        • Staines K.A.
        Models of osteoarthritis: Relevance and new insights.
        Calcif Tissue Int. 2021; 109: 243-256
        • Cucchiarini M.
        • De Girolamo L.
        • Filardo G.
        • et al.
        Basic science of osteoarthritis.
        J Exp Orthop. 2016; 3: 22
        • Squires G.R.
        • Okouneff S.
        • Ionescu M.
        • Poole A.R.
        The pathobiology of focal lesion development in aging human articular cartilage and molecular matrix changes characteristic of osteoarthritis.
        Arthritis Rheum. 2003; 48: 1261-1270
        • Oladeji L.O.
        • Stoker A.M.
        • Stannard J.P.
        • Cook J.L.
        Use of a hyperosmolar saline solution to mitigate proinflammatory and degradative responses of articular cartilage and meniscus for application to arthroscopic surgery.
        Arthroscopy. 2020; 36: 3050-3057
        • Larsen C.
        • Østergaard J.
        • Larsen S.W.
        • et al.
        Intra-articular depot formulation principles: Role in the management of postoperative pain and arthritic disorders.
        J Pharm Sci. 2008; 97: 4622-4654
        • Armstrong R.
        • English J.
        • Gibson T.
        • Chakraborty J.
        • Marks V.
        Serum methylprednisolone levels following intra-articular injection of methylprednisolone acetate.
        Ann Rheum Dis. 1981; 40: 571-574
        • Evans C.H.
        • Kraus V.B.
        • Setton L.A.
        Progress in intra-articular therapy.
        Nat Rev Rheumatol. 2014; 10: 11
        • Cook J.L.
        • Kuroki K.
        • Visco D.
        • Pelletier J.P.
        • Schulz L.
        • Lafeber F.
        The OARSI histopathology initiative—Recommendations for histological assessments of osteoarthritis in the dog.
        Osteoarthritis Cartilage. 2010; 18: S66-S79
        • Mabey T.
        • Honsawek S.
        Cytokines as biochemical markers for knee osteoarthritis.
        World J Orthop. 2015; 6: 95
        • Freemont A.J.
        • Hampson V.
        • Tilman R.
        • Goupille P.
        • Taiwo Y.
        • Hoyland J.A.
        Gene expression of matrix metalloproteinases 1, 3, and 9 by chondrocytes in osteoarthritic human knee articular cartilage is zone and grade specific.
        Ann Rheum Dis. 1997; 56: 542-548
        • Moos V.
        • Fickert S.
        • Müller B.
        • Weber U.
        • Sieper J.
        Immunohistological analysis of cytokine expression in human osteoarthritic and healthy cartilage.
        J Rheumatol. 1999; 26: 870-879
        • Koyonos L.
        • Yanke A.B.
        • McNickle A.G.
        • et al.
        A randomized, prospective, double-blind study to investigate the effectiveness of adding DepoMedrol to a local anesthetic injection in postmeniscectomy patients with osteoarthritis of the knee.
        Am J Sports Med. 2009; 37: 1077-1082
        • Kizilkaya M.
        • Yildirim O.S.
        • Dogan N.
        • Kursad H.
        • Okur A.
        Analgesic effects of intraarticular sufentanil and sufentanil plus methylprednisolone after arthroscopic knee surgery.
        Anesth Analg. 2004; 98: 1062-1065
        • Kizilkaya M.
        • Yildirim O.
        • Ezirmik N.
        • Kursad H.
        • Karsan O.
        Comparisons of analgesic effects of different doses of morphine and morphine plus methylprednisolone after knee surgery.
        Eur J Anaesthesiol. 2005; 22: 603-608
        • Bhattacharjee D.P.
        • Biswas C.
        • Haldar P.
        • Ghosh S.
        • Piplai G.
        • Rudra J.S.
        Efficacy of intraarticular dexamethasone for postoperative analgesia after arthroscopic knee surgery.
        J Anaesthesiol Clin Pharmacol. 2014; 30: 387
        • Chu C.
        • Izzo N.
        • Coyle C.
        • Papas N.
        • Logar A.
        The in vitro effects of bupivacaine on articular chondrocytes.
        J Bone Joint Surg Br. 2008; 90: 814-820
        • Dragoo J.L.
        • Korotkova T.
        • Kanwar R.
        • Wood B.
        The effect of local anesthetics administered via pain pump on chondrocyte viability.
        Am J Sports Med. 2008; 36: 1484-1488
        • Niemi G.
        Advantages and disadvantages of adrenaline in regional anaesthesia.
        Best Pract Res Clin Anaesthesiol. 2005; 19: 229-245
        • Krunic A.L.
        • Wang L.C.
        • Soltani K.
        • Weitzul S.
        • Taylor R.S.
        Digital anesthesia with epinephrine: an old myth revisited.
        J Am Acad Dermatol. 2004; 51: 755-759
        • Buchko J.Z.
        • Gurney-Dunlop T.
        • Shin J.J.
        Knee chondrolysis by infusion of bupivacaine with epinephrine through an intra-articular pain pump catheter after arthroscopic ACL reconstruction.
        Am J Sports Med. 2015; 43: 337-344
        • Sardana V.
        • Burzynski J.
        • Hasan K.
        • Zalzal P.
        Are non-steroidal anti-inflammatory drug injections an alternative to steroid injections for musculoskeletal pain? A systematic review.
        J Orthop. 2018; 15: 812-816
        • Cooke C.
        • Osborne J.
        • Jackson N.
        • et al.
        Acetaminophen, bupivacaine, Duramorph, and Toradol: A comparison of chondrocyte viability and gene expression changes in osteoarthritic human chondrocytes.
        Knee. 2020; 27: 1746-1752
        • Sakalian P.
        • Cooke C.
        Acetaminophen, bupivacaine, Duramorph, and Toradol: A comparison of gene expression changes in osteoarthritic human chondrocytes.
        Orthop J Sports Med. 2020; 8 (2325967120S00390)
        • Beitzel K.
        • McCarthy M.B.
        • Cote M.P.
        • et al.
        The effect of ketorolac tromethamine, methylprednisolone, and platelet-rich plasma on human chondrocyte and tenocyte viability.
        Arthroscopy. 2013; 29: 1164-1174