Advertisement

Tibiofemoral Relationship 3 Weeks After Anatomic Triple-Bundle Anterior Cruciate Ligament Reconstruction With 10 N of Initial Tension Is Closer to Normal Knee Versus That With 20 N of Initial Tension

Published:December 25, 2021DOI:https://doi.org/10.1016/j.arthro.2021.12.027

      Abstract

      Purpose

      This study aimed to clarify the effect of initial graft tension on the ensuing tibiofemoral relationship and on 2-year clinical outcomes after anatomic triple-bundle anterior cruciate ligament (ACL) reconstruction.

      Methods

      A total of 31 patients with primary unilateral ACL rupture (mean age, 25.1 years) were enrolled. Anatomic triple-bundle ACL reconstruction was performed using semitendinosus tendon autografts, and patients were grouped according to the total initial tension at graft fixation: 20 N for 16 patients between January 2012 and December 2012 and 10 N for 15 patients between January 2013 and December 2013. Three-dimensional computed tomography scans were performed preoperatively and at 3 weeks and 6 months postoperatively. The side-to-side difference of the 3-dimensional tibial position relative to the femur was compared at each time point. The side-to-side difference in anterior laxity was sequentially compared preoperatively, immediately after surgery, and at 6 months and 2 years postoperatively. Clinical outcomes at 2 years were likewise compared.

      Results

      One patient in each group was excluded because of secondary ACL injury. At 3 weeks postoperatively, 2.5 ± 1.3 and 1.0 ± 1.3 mm of posterior tibial displacement and 3.8° ± 2.4° and 2.0° ± 1.7° of external rotation were observed in the 20- and 10-N initial tension groups, respectively, with significant differences (P = .006 and .033). At 6 months postoperatively, anterior displacement was 0.1/0.1 mm and external rotation was 0.8°/0.4° in both groups, without any significant differences. The 2-year clinical outcomes were satisfactory, including mean side-to-side difference in anterior knee laxity of 0.5 mm in both groups.

      Conclusion

      The tibiofemoral relationship 3 weeks after anatomic triple-bundle ACL reconstruction with 10 N of initial tension is less constrained than that with 20 N. Six-month tibiofemoral relationship and 2-year clinical outcomes are satisfactory in both groups.

      Level of Evidence

      III, retrospective comparative trial
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Iwahashi T.
        • Shino K.
        • Nakata K.
        • et al.
        Direct anterior cruciate ligament insertion to the femur assessed by histology and 3-dimensional volume-rendered computed tomography.
        Arthroscopy. 2010; 26: S13-S20
        • Kusano M.
        • Yonetani Y.
        • Mae T.
        • Nakata K.
        • Yoshikawa H.
        • Shino K.
        Tibial insertions of the anterior cruciate ligament and the anterior horn of the lateral meniscus: A histological and computed tomographic study.
        Knee. 2017; 24: 782-791
        • Purnell M.L.
        • Larson A.I.
        • Clancy W.
        Anterior cruciate ligament insertions on the tibia and femur and their relationships to critical bony landmarks using high-resolution volume-rendering computed tomography.
        Am J Sports Med. 2008; 36: 2083-2090
        • Tensho K.
        • Shimodaira H.
        • Aoki T.
        • et al.
        Bony landmarks of the anterior cruciate ligament tibial footprint: A detailed analysis comparing 3-dimensional computed tomography images to visual and histological evaluations.
        Am J Sports Med. 2014; 42: 1433-1440
        • Mae T.
        • Shino K.
        • Matsumoto N.
        • et al.
        Anatomic double-bundle anterior cruciate ligament reconstruction using hamstring tendons with minimally required initial tension.
        Arthroscopy. 2010; 26: 1289-1295
        • Tachibana Y.
        • Mae T.
        • Shino K.
        • et al.
        Sequential analysis of three-dimensional tibiofemoral relationship through anatomic anterior cruciate ligament reconstruction with gravity-assisted radiographic technique in prone position.
        Asia Pac J Sports Med Arthrosc Rehabil Technol. 2019; 18: 11-17
        • Norwood L.A.
        • Cross M.J.
        Anterior cruciate ligament: Functional anatomy of its bundles in rotator instabilities.
        Am J Sports Med. 1979; 7: 23-26
        • Suzuki D.
        • Otsubo H.
        • Watanabe T.
        • et al.
        Ultrastructure of the three anterior cruciate ligament bundles.
        Clin Anat. 2015; 28: 910-916
        • Shino K.
        • Mae T.
        • Tachibana Y.
        Anatomic ACL reconstruction: Rectangular tunnel/bone-patellar tendon-bone or triple-bundle/semitendinosus tendon grafting.
        J Orthop Sci. 2015; 20: 457-468
        • Shino K.
        • Nakata K.
        • Nakamura N.
        • et al.
        Anatomic anterior cruciate ligament reconstruction using two double-looped hamstring tendon grafts via twin femoral and triple tibial tunnels.
        Oper Tech Orthop. 2005; 15: 130-134
        • Uchida R.
        • Shino K.
        • Iuchi R.
        • Tachibana Y.
        • Yokoi H.
        • Nakagawa S.
        • Mae T.
        Anatomical triple bundle anterior cruciate ligament reconstructions with hamstring tendon autografts: Tunnel locations and two-year clinical outcomes.
        Arthroscopy. 2021; 37: 2891-2900
        • Mae T.
        • Shino K.
        • Matsumoto N.
        • Yoneda K.
        • Yoshikawa H.
        • Nakata K.
        Immediate postoperative anterior knee stability: Double- versus triple-bundle anterior cruciate ligament reconstructions.
        Arthroscopy. 2013; 29: 213-219
        • Brady M.F.
        • Bradley M.P.
        • Fleming B.C.
        • Fadale P.D.
        • Hulstyn M.J.
        • Banerjee R.
        Effects of initial graft tension on the tibiofemoral compressive forces and joint position after anterior cruciate ligament reconstruction.
        Am J Sports Med. 2007; 35: 395-403
        • Mae T.
        • Shino K.
        • Nakata K.
        • Toritsuka Y.
        • Otsubo H.
        • Fujie H.
        Optimization of graft fixation at the time of anterior cruciate ligament reconstruction. Part I: Effect of initial tension.
        Am J Sports Med. 2008; 36: 1087-1093
        • Yoshiya S.
        • Andrish J.T.
        • Manley M.T.
        • Bauer T.W.
        Graft tension in anterior cruciate ligament reconstruction. An in vivo study in dogs.
        Am J Sports Med. 1987; 15: 464-470
        • Fleming B.C.
        • Brady M.F.
        • Bradley M.P.
        • Banerjee R.
        • Hulstyn M.J.
        • Fadale P.D.
        Tibiofemoral compression force differences using laxity- and force-based initial graft tensioning techniques in the anterior cruciate ligament-reconstructed cadaveric knee.
        Arthroscopy. 2008; 24: 1052-1060
        • Akelman M.R.
        • Fadale P.D.
        • Hulstyn M.J.
        • et al.
        Effect of matching or overconstraining knee laxity during anterior cruciate ligament reconstruction on knee osteoarthritis and clinical outcomes: A randomized controlled trial with 84-month follow-up.
        Am J Sports Med. 2016; 44: 1660-1670
        • Fleming B.C.
        • Fadale P.D.
        • Hulstyn M.J.
        • et al.
        The effect of initial graft tension after anterior cruciate ligament reconstruction: A randomized clinical trial with 36-month follow-up.
        Am J Sports Med. 2013; 41: 25-34
        • Zaid M.
        • Lansdown D.
        • Su F.
        • et al.
        Abnormal tibial position is correlated to early degenerative changes one year following ACL reconstruction.
        J Orthop Res. 2015; 33: 1079-1086
        • Markes A.R.
        • Knox J.
        • Zhong Q.
        • Pedoia V.
        • Li X.
        • Ma C.B.
        An abnormal tibial position is associated with alterations in the meniscal matrix: A 3-year longitudinal study after anterior cruciate ligament reconstruction.
        Orthop J Sports Med. 2019; 7 (2325967118820057)
        • Siebold R.
        • Schuhmacher P.
        • Fernandez F.
        • et al.
        Flat midsubstance of the anterior cruciate ligament with tibial ‘C’- shaped insertion site.
        Knee Surg Sports Traumatol Arthrosc. 2015; 23: 3136-3142
        • Shino K.
        • Mae T.
        • Maeda A.
        • Miyama T.
        • Shinjo H.
        • Kawakami H.
        Graft fixation with predetermined tension using a new device, the double spike plate.
        Arthroscopy. 2002; 18: 908-911
        • Mae T.
        • Shino K.
        • Yoneda K.
        • et al.
        Residual graft tension after graft fixation in anterior cruciate ligament reconstruction: Manual vs tensioning boot techniques.
        J Orthop Sci. 2020; 25: 1061-1066
        • Mae T.
        • Shino K.
        • Hiramatsu K.
        • Tachibana Y.
        • Nakagawa S.
        • Yoshikawa H.
        Anterior laxity of the knee assessed with gravity stress radiograph.
        Skelet Radiol. 2018; 47: 1349-1355
        • Franklin J.L.
        • Rosenberg T.D.
        • Paulos L.E.
        • France E.P.
        Radiographic assessment of instability of the knee due to rupture of the anterior cruciate ligament. A quadriceps-contraction technique.
        J Bone Joint Surg Am. 1991; 73: 365-372
        • Matsuo T.
        • Mae T.
        • Shino K.
        • et al.
        Tibiofemoral relationship following anatomic triple-bundle anterior cruciate ligament reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2014; 22: 2128-2135
        • Utzschneider S.
        • Goettinger M.
        • Weber P.
        • et al.
        Development and validation of a new method for the radiologic measurement of the tibial slope.
        Knee Surg Sports Traumatol Arthrosc. 2011; 19: 1643-1648
        • Dejour D.
        • Pungitore M.
        • Valluy J.
        • Nover L.
        • Saffarini M.
        • Demey G.
        Preoperative laxity in ACL-deficient knees increases with posterior tibial slope and medial meniscal tears.
        Knee Surg Sports Traumatol Arthrosc. 2019; 27: 564-572
        • Gwinner C.
        • Weiler A.
        • Roider M.
        • Schaefer F.M.
        • Jung T.M.
        Tibial slope strongly influences knee stability after posterior cruciate ligament reconstruction: A prospective 5- to 15-year follow-up.
        Am J Sports Med. 2017; 45: 355-361
        • Rosenberg T.D.
        • Paulos L.E.
        • Parker R.D.
        • Coward D.B.
        • Scott S.M.
        The forty-five-degree posteroanterior flexion weightbearing radiograph of the knee.
        J Bone Joint Surg Am. 1988; 70: 1479-1483
        • Harris J.D.
        • Brand J.C.
        • Cote M.P.
        • Faucett S.C.
        • Dhawan A.
        Research pearls: The significance of statistics and perils of pooling. Part 1: Clinical versus statistical significance.
        Arthroscopy. 2017; 33: 1102-1112
        • Hosseini A.
        • Van de Velde S.
        • Gill T.J.
        • Li G.
        Tibiofemoral cartilage contact biomechanics in patients after reconstruction of a ruptured anterior cruciate ligament.
        J Orthop Res. 2012; 30: 1781-1788
        • Li G.
        • Moses J.M.
        • Papannagari R.
        • Pathare N.P.
        • DeFrate L.E.
        • Gill T.J.
        Anterior cruciate ligament deficiency alters the in vivo motion of the tibiofemoral cartilage contact points in both the anteroposterior and mediolateral directions.
        J Bone Joint Surg Am. 2006; 88: 1826-1834
        • Beynnon B.D.
        • Johnson R.J.
        • Naud S.
        • et al.
        Accelerated versus nonaccelerated rehabilitation after anterior cruciate ligament reconstruction: A prospective, randomized, double-blind investigation evaluating knee joint laxity using roentgen stereophotogrammetric analysis.
        Am J Sports Med. 2011; 39: 2536-2548
        • Brophy R.H.
        • Kovacevic D.
        • Imhauser C.W.
        • et al.
        Effect of short-duration low-magnitude cyclic loading versus immobilization on tendon-bone healing after ACL reconstruction in a rat model.
        J Bone Joint Surg Am. 2011; 93: 381-393
        • Camp C.L.
        • Lebaschi A.
        • Cong G.T.
        • et al.
        Timing of postoperative mechanical loading affects healing following anterior cruciate ligament reconstruction: Analysis in a murine model.
        J Bone Joint Surg Am. 2017; 99: 1382-1391
        • Drez Jr., D.J.
        • DeLee J.
        • Holden J.P.
        • Arnoczky S.
        • Noyes F.R.
        • Roberts T.S.
        Anterior cruciate ligament reconstruction using bone-patellar tendon-bone allografts. A biological and biomechanical evaluation in goats.
        Am J Sports Med. 1991; 19: 256-263
        • Yoshiya S.
        • Kurosaka M.
        • Ouchi K.
        • Kuroda R.
        • Mizuno K.
        Graft tension and knee stability after anterior cruciate ligament reconstruction.
        Clin Orthop Relat Res. 2002; 394: 154-160
        • Mae T.
        • Fleming B.C.
        ACL graft tensioning.
        in: Nakamura N. Zaffagnini S. Marx R.G. Musahl V. Controversies in the technical aspects of ACL reconstruction: An evidence-based medicine approach. Springer, Berlin2017: 289-299
        • van Kampen A.
        • Wymenga A.B.
        • van der Heide H.J.
        • Bakens H.J.
        The effect of different graft tensioning in anterior cruciate ligament reconstruction: A prospective randomized study.
        Arthroscopy. 1998; 14: 845-850
        • Suzuki T.
        • Shino K.
        • Yamakawa S.
        • et al.
        A biomechanical comparison of single-, double-, and triple-bundle anterior cruciate ligament reconstructions using a hamstring tendon graft.
        Arthroscopy. 2019; 35: 896-905
        • Musahl V.
        • Citak M.
        • O’Loughlin P.F.
        • Choi D.
        • Bedi A.
        • Pearle A.D.
        The effect of medial versus lateral meniscectomy on the stability of the anterior cruciate ligament-deficient knee.
        Am J Sports Med. 2010; 38: 1591-1597