Advertisement

Bone Marrow Aspirate Concentrate Augmentation May Accelerate Allograft Ligamentization in Anterior Cruciate Ligament Reconstruction: A Double-Blinded Randomized Controlled Trial

Published:January 15, 2022DOI:https://doi.org/10.1016/j.arthro.2022.01.010

      Purpose

      To assess the effect of bone marrow aspiration concentrate (BMAC) augmentation on clinical outcomes and magnetic resonance imaging (MRI) findings in anterior cruciate ligament (ACL) reconstruction (ACLR) with bone–patellar tendon–bone (BTB) allografts.

      Methods

      A double-blinded, randomized controlled trial was conducted on 80 patients undergoing ACL reconstruction using BTB allografts. Patients were randomized to 2 groups: (1) bone marrow aspirate was collected from the iliac crest, concentrated, and approximately 2.5 mL was injected into the BTB allograft, or (2) a small sham incision was made at the iliac crest (control). MRI was performed at 3 months and 9 months postoperatively to determine the signal intensity ratio of the ACL graft.

      Results

      Seventy-three patients were available for follow-up at 1-year postoperatively (36 BMAC, 37 control). International Knee Documentation Committee (IKDC) scores were significantly greater in the BMAC group versus the control at the 9-month postoperative period (81.6 ± 10.5 vs 74.6 ± 14.2, P = .048). There was no significant difference in the proportion of patients who met the minimal clinically important difference for IKDC between the BMAC and control groups at 9 months (89% vs 85%; P = .7). Three months postoperatively, signal intensity ratio of the inferior third of the ACL graft was significantly greater in the BMAC group versus the control group (3.2 ± 2.2 vs 2.1 ± 1.5; P = .02).

      Conclusions

      Patients who received BMAC augmentation of the BTB allograft during ACL reconstruction demonstrated greater signal intensity scores on MRI at 3 months, suggesting increased metabolic activity and remodeling, and potentially accelerated ligamentization. Additionally, patients in the BMAC group had greater patient-reported outcomes (IKDC) at 9 months postoperatively when compared with those who underwent a standard surgical procedure. There was no significant difference in the proportion of patients who met the minimal clinically important difference for IKDC between the BMAC and control groups at 9 months, suggesting limited clinical significance at this time point.

      Level of Evidence

      I, randomized control trial.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Tibor L.
        • Chan P.H.
        • Funahashi T.T.
        • Wyatt R.
        • Maletis G.B.
        • Inacio M.C.
        Surgical technique trends in primary ACL reconstruction from 2007 to 2014.
        J Bone Joint Surg Am. 2016; 98: 1079-1089
        • Buller L.T.
        • Best M.J.
        • Baraga M.G.
        • Kaplan L.D.
        Trends in anterior cruciate ligament reconstruction in the United States.
        Orthop J Sports Med. 2015; 3 (2325967114563664)
        • van Melick N.
        • van Cingel R.E.
        • Brooijmans F.
        • et al.
        Evidence-based clinical practice update: Practice guidelines for anterior cruciate ligament rehabilitation based on a systematic review and multidisciplinary consensus.
        Br J Sports Med. 2016; 50: 1506-1515
        • Kim S.
        • Bosque J.
        • Meehan J.P.
        • Jamali A.
        • Marder R.
        Increase in outpatient knee arthroscopy in the United States: A comparison of National Surveys of Ambulatory Surgery, 1996 and 2006.
        J Bone Joint Surg Am. 2011; 93: 994-1000
        • Spindler K.P.
        • Wright R.W.
        Clinical practice. Anterior cruciate ligament tear.
        N Engl J Med. 2008; 359: 2135-2142
        • Chu C.R.
        • Williams A.A.
        • West R.V.
        • et al.
        Quantitative magnetic resonance imaging UTE-T2∗ mapping of cartilage and meniscus healing after anatomic anterior cruciate ligament reconstruction.
        Am J Sports Med. 2014; 42: 1847-1856
        • Wiggins A.J.
        • Grandhi R.K.
        • Schneider D.K.
        • Stanfield D.
        • Webster K.E.
        • Myer G.D.
        Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: A systematic review and meta-analysis.
        Am J Sports Med. 2016; 44: 1861-1876
        • Friel N.A.
        • Chu C.R.
        The role of ACL injury in the development of posttraumatic knee osteoarthritis.
        Clin Sports Med. 2013; 32: 1-12
        • Wang L.J.
        • Zeng N.
        • Yan Z.P.
        • Li J.T.
        • Ni G.X.
        Post-traumatic osteoarthritis following ACL injury.
        Arthritis Res Ther. 2020; 22: 57
        • Luc B.
        • Gribble P.A.
        • Pietrosimone B.G.
        Osteoarthritis prevalence following anterior cruciate ligament reconstruction: A systematic review and numbers-needed-to-treat analysis.
        J Athl Train. 2014; 49: 806-819
        • Ajuied A.
        • Wong F.
        • Smith C.
        • et al.
        Anterior cruciate ligament injury and radiologic progression of knee osteoarthritis: A systematic review and meta-analysis.
        Am J Sports Med. 2014; 42: 2242-2252
        • Titchenal M.R.
        • Chu C.R.
        • Erhart-Hledik J.C.
        • Andriacchi T.P.
        Early changes in knee center of rotation during walking after anterior cruciate ligament reconstruction correlate with later changes in patient-reported outcomes.
        Am J Sports Med. 2017; 45: 915-921
        • Kosaka M.
        • Nakase J.
        • Hayashi K.
        • Tsuchiya H.
        Adipose-derived regenerative cells promote tendon-bone healing in a rabbit model.
        Arthroscopy. 2016; 32: 851-859
        • Lui P.P.
        • Wong O.T.
        • Lee Y.W.
        Application of tendon-derived stem cell sheet for the promotion of graft healing in anterior cruciate ligament reconstruction.
        Am J Sports Med. 2014; 42: 681-689
        • Soon M.Y.
        • Hassan A.
        • Hui J.H.
        • Goh J.C.
        • Lee E.H.
        An analysis of soft tissue allograft anterior cruciate ligament reconstruction in a rabbit model: A short-term study of the use of mesenchymal stem cells to enhance tendon osteointegration.
        Am J Sports Med. 2007; 35: 962-971
        • Yanke A.
        • Bell R.
        • Lee A.
        • Shewman E.F.
        • Wang V.
        • Bach Jr., B.R.
        Regional mechanical properties of human patellar tendon allografts.
        Knee Surg Sports Traumatol Arthrosc. 2015; 23: 961-967
        • Markolf K.L.
        • Burchfield D.M.
        • Shapiro M.M.
        • Cha C.W.
        • Finerman G.A.
        • Slauterbeck J.L.
        Biomechanical consequences of replacement of the anterior cruciate ligament with a patellar ligament allograft. Part II: Forces in the graft compared with forces in the intact ligament.
        J Bone Joint Surg Am. 1996; 78: 1728-1734
        • Chahla J.
        • Mannava S.
        • Cinque M.E.
        • Geeslin A.G.
        • Codina D.
        • LaPrade R.F.
        Bone marrow aspirate concentrate harvesting and processing technique.
        Arthrosc Tech. 2017; 6: e441-e445
        • Somaiah C.
        • Kumar A.
        • Mawrie D.
        • et al.
        Collagen promotes higher adhesion, survival and proliferation of mesenchymal stem cells.
        PLoS One. 2015; 10e0145068
        • Hakozaki A.
        • Niki Y.
        • Enomoto H.
        • Toyama Y.
        • Suda Y.
        Clinical significance of T2∗-weighted gradient-echo MRI to monitor graft maturation over one year after anatomic double-bundle anterior cruciate ligament reconstruction: a comparative study with proton density-weighted MRI.
        Knee. 2015; 22: 4-10
        • Kawakami Y.
        • Takayama K.
        • Matsumoto T.
        • et al.
        Anterior cruciate ligament-derived stem cells transduced with BMP2 accelerate graft-bone integration after ACL reconstruction.
        Am J Sports Med. 2017; 45: 584-597
        • Howell S.M.
        • Clark J.A.
        • Blasier R.D.
        Serial magnetic resonance imaging of hamstring anterior cruciate ligament autografts during the first year of implantation. A preliminary study.
        Am J Sports Med. 1991; 19: 42-47
        • Weiler A.
        • Peters G.
        • Maurer J.
        • Unterhauser F.N.
        • Sudkamp N.P.
        Biomechanical properties and vascularity of an anterior cruciate ligament graft can be predicted by contrast-enhanced magnetic resonance imaging. A two-year study in sheep.
        Am J Sports Med. 2001; 29: 751-761
        • Chiroff R.T.
        Experimental replacement of the anterior cruciate ligament. A histological and microradiographic study.
        J Bone Joint Surg Am. 1975; 57: 1124-1127
        • Murakami Y.
        • Sumen Y.
        • Ochi M.
        • Fujimoto E.
        • Adachi N.
        • Ikuta Y.
        MR evaluation of human anterior cruciate ligament autograft on oblique axial imaging.
        J Comput Assist Tomogr. 1998; 22: 270-275
        • Nwachukwu B.U.
        • Chang B.
        • Voleti P.B.
        • et al.
        Preoperative Short Form Health Survey Score is predictive of return to play and minimal clinically important difference at a minimum 2-year follow-up after anterior cruciate ligament reconstruction.
        Am J Sports Med. 2017; 45: 2784-2790
        • Harris J.D.
        • Brand J.C.
        • Cote M.P.
        • Faucett S.C.
        • Dhawan A.
        Research Pearls: The significance of statistics and perils of pooling. Part 1: Clinical versus statistical significance.
        Arthroscopy. 2017; 33: 1102-1112
        • Zuk P.A.
        • Zhu M.
        • Ashjian P.
        • et al.
        Human adipose tissue is a source of multipotent stem cells.
        Mol Biol Cell. 2002; 13: 4279-4295
        • Caplan A.I.
        Review: Mesenchymal stem cells: Cell-based reconstructive therapy in orthopedics.
        Tissue Eng. 2005; 11: 1198-1211
        • Molloy T.
        • Wang Y.
        • Murrell G.
        The roles of growth factors in tendon and ligament healing.
        Sports Med. 2003; 33: 381-394
        • Andriolo L.
        • Di Matteo B.
        • Kon E.
        • Filardo G.
        • Venieri G.
        • Marcacci M.
        PRP augmentation for ACL reconstruction.
        Biomed Res Int. 2015; 2015: 371746
        • Claes S.
        • Verdonk P.
        • Forsyth R.
        • Bellemans J.
        The "ligamentization" process in anterior cruciate ligament reconstruction: what happens to the human graft? A systematic review of the literature.
        Am J Sports Med. 2011; 39: 2476-2483
        • Gans I.
        • Retzky J.S.
        • Jones L.C.
        • Tanaka M.J.
        Epidemiology of recurrent anterior cruciate ligament injuries in National Collegiate Athletic Association sports: The Injury Surveillance Program, 2004-2014.
        Orthop J Sports Med. 2018; 6 (2325967118777823)
        • Salmon L.
        • Russell V.
        • Musgrove T.
        • Pinczewski L.
        • Refshauge K.
        Incidence and risk factors for graft rupture and contralateral rupture after anterior cruciate ligament reconstruction.
        Arthroscopy. 2005; 21: 948-957
        • Samitier G.
        • Marcano A.I.
        • Alentorn-Geli E.
        • Cugat R.
        • Farmer K.W.
        • Moser M.W.
        Failure of anterior cruciate ligament reconstruction.
        Arch Bone Joint Surg. 2015; 3: 220-240
        • Kaeding C.C.
        • Leger-St-Jean B.
        • Magnussen R.A.
        Epidemiology and diagnosis of anterior cruciate ligament injuries.
        Clin Sports Med. 2017; 36: 1-8
        • Sanchez M.
        • Anitua E.
        • Azofra J.
        • Prado R.
        • Muruzabal F.
        • Andia I.
        Ligamentization of tendon grafts treated with an endogenous preparation rich in growth factors: Gross morphology and histology.
        Arthroscopy. 2010; 26: 470-480
        • Lim J.K.
        • Hui J.
        • Li L.
        • Thambyah A.
        • Goh J.
        • Lee E.H.
        Enhancement of tendon graft osteointegration using mesenchymal stem cells in a rabbit model of anterior cruciate ligament reconstruction.
        Arthroscopy. 2004; 20: 899-910
        • Noya Salces J.
        • Gomez-Carmona P.M.
        • Gracia-Marco L.
        • Moliner-Urdiales D.
        • Sillero-Quintana M.
        Epidemiology of injuries in First Division Spanish football.
        J Sports Sci. 2014; 32: 1263-1270
        • Silva A.
        • Sampaio R.
        Anatomic ACL reconstruction: does the platelet-rich plasma accelerate tendon healing?.
        Knee Surg Sports Traumatol Arthrosc. 2009; 17: 676-682
        • Lu H.
        • Chen C.
        • Xie S.
        • Tang Y.
        • Qu J.
        Tendon healing in bone tunnel after human anterior cruciate ligament reconstruction: A systematic review of histological results.
        J Knee Surg. 2019; 32: 454-462
        • Yao S.
        • Fu B.S.
        • Yung P.S.
        Graft healing after anterior cruciate ligament reconstruction (ACLR).
        Asia Pac J Sports Med Arthrosc Rehabil Technol. 2021; 25: 8-15