Advertisement
Original Article| Volume 38, ISSUE 7, P2268-2277, July 2022

Download started.

Ok

Modified Pulvertaft on Weave Technique Restores Full Active Knee Extension in Patients With Large Chronic Quadriceps Tendon Rupture: A Case Series

Published:January 31, 2022DOI:https://doi.org/10.1016/j.arthro.2022.01.023

      Purpose

      We aimed to investigate the clinical and functional outcomes, including maximal and explosive strength, after chronic quadriceps tendon rupture repair with Modified Pulvertaft on Weave (MPW) technique

      Methods

      Knee joint range of motion (ROM), patella height, thigh circumference, and Lysholm and International Knee Documentation Committee (IKDC) scores were assessed preoperatively and postoperatively. The knee extensors maximal (isokinetic peak torque and isometric maximal voluntary contraction (MVC) torque) and explosive strength—rate of torque development (RTD) early [RTD50 and RTD100] and late [RTD250]—were performed. We assessed the thigh circumference and vastus lateralis muscle thickness (MT) as indicators of quadriceps muscle mass, and the voluntary quadriceps activation using surface electromyography (EMG50).

      Results

      Nine patients (mean age: 53 ± 11 years) took part in the study. We observed a significant increase in the knee active ROM and a decreased extension deficit (both, P < .001), but not for pain (P = .07), IKDC (P = .07), and Lysholm (P = .21) after the surgery. We did not observe a difference between involved (n = 8) and uninvolved (n = 10) limbs for ROM, thigh circumference, and MT. We observed differences for extensors peak torque, MVC torque, and late RTD (all, P < .05). However, we did not observe differences for early RTD and EMG50. Significant positive correlations were observed for RTD50 (ρ = .80) and RTD100 (ρ = .81) vs EMG50. Both the IKDC and Lysholm were better correlated with the early than with later RTD.

      Conclusions

      The MPW reestablished the active knee extension. The same level of quadriceps muscle mass was observed in both limbs, suggesting a lack of hypotrophy due to the injury. Although the involved limb had demonstrated lower knee extensors maximal strength, they demonstrate an equivalent early RTD when compared to the uninvolved limb. The early RTD seems to be better correlated with the patient’s functionality than the later RTD and maximal strength.

      Level of Evidence

      IV, case series.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Andrikoula S.
        • Tokis A.
        • Vasiliadis H.S.
        • Georgoulis A.
        The extensor mechanism of the knee joint: An anatomical study.
        Knee Surg Sport Traumatol Arthrosc. 2006; 14: 214-220https://doi.org/10.1007/s00167-005-0680-3
        • McGrory J.E.
        Disruption of the extensor mechanism of the knee.
        J Emerg Med. 2003; 24: 163-168https://doi.org/10.1016/S0736-4679(02)00719-9
        • Siwek C.W.
        • Rao J.P.
        Ruptures of the extensor mechanism of the knee joint.
        J Bone Jt Surg Ser A. 1981; 63: 932-937https://doi.org/10.2106/00004623-198163060-00010
        • Rougraff B.T.
        • Reeck C.C.
        • Essenmacher J.
        Complete quadriceps tendon ruptures.
        Orthopedics. 1996; 19: 509-514https://doi.org/10.3928/0147-7447-19960601-07
        • Ibounig T.
        • Simons T.A.
        Etiology, diagnosis and treatment of tendinous knee extensor mechanism injuries.
        Scand J Surg. 2016; 105: 67-72https://doi.org/10.1177/1457496915598761
        • Elattar O.
        • McBeth Z.
        • Curry E.J.
        • Parisien R.L.
        • Galvin J.W.
        • Li X.
        Management of chronic quadriceps tendon rupture: A critical analysis review.
        JBJS Rev. 2021; 9https://doi.org/10.2106/JBJS.RVW.20.00096
        • Ciriello V.
        • Gudipati S.
        • Tosounidis T.
        • Soucacos P.N.
        • Giannoudis P.V.
        Clinical outcomes after repair of quadriceps tendon rupture: A systematic review.
        Injury. 2012; 43: 1931-1938https://doi.org/10.1016/j.injury.2012.08.044
        • Pengas I.P.
        • Assiotis A.
        • Khan W.
        • Spalding T.
        Adult native knee extensor mechanism ruptures.
        Injury. 2016; 47: 2065-2070https://doi.org/10.1016/j.injury.2016.06.032
        • Rehman H.
        • Kovacs P.
        Quadriceps tendon repair using hamstring, prolene mesh and autologous conditioned plasma augmentation. A novel technique for repair of chronic quadriceps tendon rupture.
        Knee. 2015; 22: 664-668https://doi.org/10.1016/J.KNEE.2015.04.006
        • Shi S.
        • Shi G.
        • Laurent E.
        • Ninomiya J.
        Modified V-Y turndown flap augmentation for quadriceps tendon rupture following total knee arthroplasty: A retrospective study.
        J Bone Joint Surg Am. 2019; 101: 1010-1015https://doi.org/10.2106/JBJS.18.01098
        • Temponi E.F.
        • de Carvalho Júnior L.H.
        • da Silva Bernardes C.O.
        • Teixeira B.P.
        Reconstruction of chronic patellar tendon rupture using graft from contralateral patella graft together with reinforcement from flexor tendons. Case report.
        Rev Bras Ortop. 2016; 51: 378-382https://doi.org/10.1016/J.RBOE.2016.03.003
        • Scuderi C.
        Ruptures of the quadriceps tendon. Study of twenty tendon ruptures.
        Am J Surg. 1958; 95: 626-635https://doi.org/10.1016/0002-9610(58)90444-6
        • Scuderi C.
        • Schrey E.L.
        Ruptures of the quadriceps tendon.
        Arch Surg. 1950; 61: 42-54https://doi.org/10.1001/archsurg.1950.01250020045006
      1. Alaia MJ, Kaplan DJ, Ryan WE Jr, et al. Chronic quadriceps tendon reconstruction. Presented at the Annual Meeting of the American Academy of Orthopaedic Surgeons, Orlando, FL, March 1-5, 2016.

        • Rocha de Faria J.L.
        • Barroso de Matos M.
        • de Araújo Barros Cobra H.A.
        • et al.
        Surgical treatment of chronic rupture of the quadriceps using a modified Pulvertaft weave technique.
        Arthrosc Tech. 2019; 8: e1163-e1169https://doi.org/10.1016/j.eats.2019.06.006
        • Van Der Bracht H.
        • Verdonk R.
        • Stuyts B.
        Augmentation of a patellar tendon repair with an autologous semitendinosus graft.
        Acta Orthop Belg. 2009; 75: 417-419
        • Maletis G.B.
        • Inacio M.C.S.
        • Reynolds S.
        • Desmond J.L.
        • Maletis M.M.
        • Funahashi T.T.
        Incidence of postoperative anterior cruciate ligament reconstruction infections: Graft choice makes a difference.
        Am J Sports Med. 2013; 41: 1780-1785https://doi.org/10.1177/0363546513490665
        • Colombelli A.
        • Polidoro F.
        • Guerra G.
        • Belluati A.
        Patellar and quadriceps tendons acute repair with suture anchors.
        Acta Biomed. 2019; 90: 209-213https://doi.org/10.23750/abm.v90i1-S.8108
        • Konrath G.A.
        • Chen D.
        • Lock T.
        • et al.
        Outcomes following repair of quadriceps tendon ruptures.
        J Orthop Trauma. 1998; 12: 273-279https://doi.org/10.1097/00005131-199805000-00010
        • Wenzl M.E.
        • Kirchner R.
        • Seide K.
        • Strametz S.
        • Jürgens C.
        Quadriceps tendon ruptures. Is there a complete functional restitution?.
        Injury. 2004; 35: 922-926https://doi.org/10.1016/S0020-1383(03)00261-4
        • West J.L.
        • Keene J.S.
        • Kaplan L.D.
        Early motion after quadriceps and patellar tendon repairs: Outcomes with single-suture augmentation.
        Am J Sports Med. 2008; 36: 316-323https://doi.org/10.1177/0363546507308192
        • Livingston L.A.
        • Stevenson J.M.
        • Olney S.J.
        Stairclimbing kinematics on stairs of differing dimensions.
        Arch Phys Med Rehabil. 1991; 72: 398-402https://doi.org/10.5555/uri:pii:000399939190174H
        • Jeon M.Y.
        • Gu M.O.
        • Yim J.E.
        Comparison of walking, muscle strength, balance, and fear of falling between repeated fall group, one-time fall group, and nonfall group of the elderly receiving home care service.
        Asian Nurs Res (Korean Soc Nurs Sci). 2017; 11: 290-296https://doi.org/10.1016/j.anr.2017.11.003
        • Maffiuletti N.A.
        • Aagaard P.
        • Blazevich A.J.
        • Folland J.
        • Tillin N.
        • Duchateau J.
        Rate of force development: Physiological and methodological considerations.
        Eur J Appl Physiol. 2016; 116: 1091-1116https://doi.org/10.1007/s00421-016-3346-6
        • Del Vecchio A.
        • Negro F.
        • Holobar A.
        • et al.
        You are as fast as your motor neurons: Speed of recruitment and maximal discharge of motor neurons determine the maximal rate of force development in humans.
        J Physiol. 2019; 597: 2445-2456https://doi.org/10.1113/JP277396
        • Cossich V.
        • Maffiuletti N.A.
        Early vs. late rate of torque development: Relation with maximal strength and influencing factors.
        J Electromyogr Kinesiol. 2020; 55: 102486https://doi.org/10.1016/j.jelekin.2020.102486
        • Andersen L.L.
        • Aagaard P.
        Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development.
        Eur J Appl Physiol. 2006; 96: 46-52https://doi.org/10.1007/s00421-005-0070-z
        • Folland J.P.
        • Buckthorpe M.W.
        • Hannah R.
        Human capacity for explosive force production: Neural and contractile determinants.
        Scand J Med Sci Sport. 2014; 24: 894-906https://doi.org/10.1111/sms.12131
        • Maden-Wilkinson T.M.
        • Balshaw T.G.
        • Massey G.J.
        • Folland J.P.
        What makes long-term resistance-trained individuals so strong? A comparison of skeletal muscle morphology, architecture, and joint mechanics.
        J Appl Physiol. 2020; 128: 1000-1011https://doi.org/10.1152/japplphysiol.00224.2019
        • Friesenbichler B.
        • Casartelli N.C.
        • Wellauer V.
        • et al.
        Explosive and maximal strength before and 6 months after total hip arthroplasty.
        J Orthop Res. 2018; 36: 425-431https://doi.org/10.1002/jor.23626
        • Turpeinen J.T.
        • Freitas T.T.
        • Rubio-Arias J.Á.
        • Jordan M.J.
        • Aagaard P.
        Contractile rate of force development after anterior cruciate ligament reconstruction—A comprehensive review and meta-analysis.
        Scand J Med Sci Sport. 2020; 30: 1572-1585https://doi.org/10.1111/sms.13733
        • Verdano M.A.
        • Zanelli M.
        • Aliani D.
        • Corsini T.
        • Pellegrini A.
        • Ceccarelli F.
        Quadriceps tendon tear rupture in healthy patients treated with patellar drilling holes: Clinical and ultrasonographic analysis after 36 months of follow-up.
        Muscles Ligaments Tendons J. 2014; 4: 194-200https://doi.org/10.11138/mltj/2014.4.2.194
        • Jensen M.P.
        • Karoly P.
        • Braver S.
        The measurement of clinical pain intensity: A comparison of six methods.
        Pain. 1986; 27: 117-126https://doi.org/10.1016/0304-3959(86)90228-9
        • Peccin M.S.
        • Ciconelli R.
        • Cohen M.
        Specific questionnaire for knee symptoms—The “Lysholm knee scoring scale” – translation and validation into Portuguese.
        Acta Ortop Bras. 2006; 14: 268-272https://doi.org/10.1590/S1413-78522006000500008
        • Metsavaht L.
        • Leporace G.
        • Riberto M.
        • De Mello Sposito M.M.
        • Batista L.A.
        Translation and cross-cultural adaptation of the Brazilian version of the International Knee Documentation Committee subjective knee form: Validity and reproducibility.
        Am J Sports Med. 2010; 38: 1894-1899https://doi.org/10.1177/0363546510365314
        • Insall J.
        • Salvati E.
        Patella position in the normal knee joint.
        Radiology. 1971; 101: 101-104https://doi.org/10.1148/101.1.101
        • Blazevich A.J.
        • Gill N.D.
        • Zhou S.
        Intra-and intermuscular variation in human quadriceps femoris architecture assessed in vivo.
        J Anat. 2006; 209: 289-310
        • Behrendt C.
        • Zaluski A.
        • Albuquerque R.
        • de Sousa E.
        • Cavanellas N.
        Comparative evaluation of patellar height methods in the Brazilian population.
        Rev Bras Ortop. 2015; 51: 53-57https://doi.org/10.1016/J.RBOE.2015.12.007
        • Gracitelli G.C.
        • Pierami R.
        • Tonelli T.A.
        • et al.
        Assessment of patellar height measurement methods from digital radiography.
        Rev Bras Ortop (English Ed.). 2012; 47: 210-213https://doi.org/10.1016/S2255-4971(15)30088-4
        • Lang T.
        • Cook J.
        • Rio E.
        • Gaida J.
        What tendon pathology is seen on imaging in people who have taken fluoroquinolones? A systematic review.
        Fundam Clin Pharmacol. 2017; 31: 4-16https://doi.org/10.1111/FCP.12228
        • Myers D.
        • Glazier M.
        • Taylor B.
        Knee extensor mechanism disruptions: A review.
        Int J Orthop. 2020; 7: 1260-1267https://doi.org/10.17554/J.ISSN.2311-5106.2020.07.366
        • Sueyoshi T.
        • Nakahata A.
        • Emoto G.
        • Yuasa T.
        Single-leg hop test performance and isokinetic knee strength after anterior cruciate ligament reconstruction in athletes.
        Orthop J Sport Med. 2017; 5 (2325967117739811. doi:10.1177/2325967117739811)
        • Goes R.A.
        • Cossich V.R.A.
        • França B.R.
        • et al.
        Return to play after anterior cruciate ligament reconstruction.
        Rev Bras Med do Esporte. 2020; 26: 478-486https://doi.org/10.1590/1517-8692202026062019_0056
        • Bento P.C.B.
        • Pereira G.
        • Ugrinowitsch C.
        • Rodacki A.L.F.
        Peak torque and rate of torque development in elderly with and without fall history.
        Clin Biomech. 2010; 25: 450-454https://doi.org/10.1016/j.clinbiomech.2010.02.002
        • LaRoche D.P.
        • Cremin K.A.
        • Greenleaf B.
        • Croce R.V.
        Rapid torque development in older female fallers and nonfallers: A comparison across lower-extremity muscles.
        J Electromyogr Kinesiol. 2010; 20: 482-488
        • Hardy W.J.R.
        • Chimutengwende-Gordon M.
        • Bakar I.
        Rupture of the quadriceps tendon.
        . 2005; 87: 1361-1363https://doi.org/10.1302/0301-620X.87B10.16624
        • Ellanti P.
        • Moriarity A.
        • Wainberg N.
        • Fhoghlu C.N.
        • McCarthy T.
        Association between patella spurs and quadriceps tendon ruptures.
        Muscles Ligaments Tendons J. 2015; 5: 88-91https://doi.org/10.11138/MLTJ/2015.5.2.088
        • Pagliari M.
        • Menna C.
        • Migliorini A.
        • Molinari M.
        Atraumatic acute bilateral quadriceps tendon rupture in a patient with bilateral patella spurs. A case report and review of literature.
        Acta Biomed. 2018; 90: 203-208https://doi.org/10.23750/ABM.V90I1-S.8008