Advertisement

Acute Intervention With Selective Interleukin-1 Inhibitor Therapy May Reduce the Progression of Posttraumatic Osteoarthritis of the Knee: A Systematic Review of Current Evidence

Published:February 18, 2022DOI:https://doi.org/10.1016/j.arthro.2022.02.009

      Purpose

      To evaluate the efficacy of selective interleukin (IL)-1 inhibitor therapy in the reduction of posttraumatic osteoarthritis (PTOA) progression following knee ligament or meniscal injury.

      Methods

      A systematic review was conducted evaluating the disease-modifying efficacy of selective IL-1 inhibition in the setting of knee PTOA.

      Results

      The literature search identified 364 articles and 11 studies were included (n = 10 preclinical, n = 1 clinical). Drug delivery in preclinical studies was administered using IL-1Ra–encoded helper-dependent adenovirus particles (n = 3), synovial cells transfected with an IL-1Ra–encoded retroviral vector (n = 3), or varying chemical compositions of nonviral microcapsule gene carriers (n = 4). Intervention with selective IL-1 inhibitor therapy within 2 weeks of injury provided the greatest protective benefits in reducing the progression of PTOA regardless of drug delivery methodology in preclinical models. The majority of studies reported significantly better cartilage integrity and reduction in lesion size in animals treated with gene therapy with the greatest effects seen in those treated within 5 to 7 days of injury.

      Conclusions

      Early intervention with selective IL-1 inhibitor therapy were effective in reducing proinflammatory IL-1β levels in the acute and subacute phases following traumatic knee injury in preclinical animal model studies, while significantly reducing cartilage damage, lesion size, and PTOA progression at short-term follow-up. However, it was found that the effect of these therapies diminished over time.

      Clinical Relevance

      Acute, intra-articular injection of selective IL-1 inhibitors may reduce PTOA progression, supporting the need for additional basic and clinical investigation.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Suomalainen P.
        • Järvelä T.
        • Paakkala A.
        • Kannus P.
        • Järvinen M.
        Double-bundle versus single-bundle anterior cruciate ligament reconstruction: A prospective randomized study with 5-year results.
        Am J Sports Med. 2012; 40: 1511-1518https://doi.org/10.1177/0363546512448177
        • Cinque M.E.
        • Dornan G.J.
        • Chahla J.
        • Moatshe G.
        • LaPrade R.F.
        High rates of osteoarthritis develop after anterior cruciate ligament surgery: An analysis of 4108 patients.
        Am J Sports Med. 2018; 46: 2011-2019https://doi.org/10.1177/0363546517730072
        • Cinque M.E.
        • Kunze K.N.
        • Williams B.T.
        • Moatshe G.
        • LaPrade R.F.
        • Chahla J.
        Higher incidence of radiographic posttraumatic osteoarthritis with transtibial femoral tunnel positioning compared with anteromedial femoral tunnel positioning during anterior cruciate ligament reconstruction: A systematic review and meta-analysis.
        Am J Sports Med. 2022; 50: 255-263
        • Lohmander L.S.
        • Ostenberg A.
        • Englund M.
        • Roos H.
        High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury.
        Arthritis Rheum. 2004; 50: 3145-3152https://doi.org/10.1002/art.20589
        • von Porat A.
        • Roos E.M.
        • Roos H.
        High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: A study of radiographic and patient relevant outcomes.
        Ann Rheum Dis. 2004; 63: 269-273https://doi.org/10.1136/ard.2003.008136
        • Menendez M.I.
        • Hettlich B.
        • Wei L.
        • Knopp M.V.
        Feasibility of Na18F PET/CT and MRI for noninvasive in vivo quantification of knee pathophysiological bone metabolism in a canine model of post-traumatic osteoarthritis.
        Mol Imaging. 2017; 16 (1536012117714575)https://doi.org/10.1177/1536012117714575
        • Riordan E.A.
        • Little C.
        • Hunter D.
        Pathogenesis of post-traumatic OA with a view to intervention.
        Best Pract Res Clin Rheumatol. 2014; 28: 17-30https://doi.org/10.1016/j.berh.2014.02.001
        • Centers for Disease Control and Prevention (CDC)
        National and state medical expenditures and lost earnings attributable to arthritis and other rheumatic condition—United States, 2003.
        MMWR Morb Mortal Wkly Rep. 2007; 56: 4-7
        • Hunter D.J.
        • Bierma-Zeinstra S.
        Osteoarthritis.
        Lancet Lond Engl. 2019; 393: 1745-1759https://doi.org/10.1016/S0140-6736(19)30417-9
        • DePhillipo N.N.
        • Aman Z.S.
        • Dekker T.J.
        • Moatshe G.
        • Chahla J.
        • LaPrade R.F.
        Preventative and disease-modifying investigations for osteoarthritis management are significantly under-represented in the clinical trial pipeline: A 2020 review.
        Arthroscopy. 2021; 37: 2627-2639https://doi.org/10.1016/j.arthro.2021.03.050
        • Bajpayee A.G.
        • De la Vega R.E.
        • Scheu M.
        • et al.
        Sustained intra-cartilage delivery of low dose dexamethasone using a cationic carrier for treatment of post traumatic osteoarthritis.
        Eur Cell Mater. 2017; 34: 341-364https://doi.org/10.22203/eCM.v034a21
        • Kraus V.B.
        • Birmingham J.
        • Stabler T.V.
        • et al.
        Effects of intraarticular IL1-Ra for acute anterior cruciate ligament knee injury: A randomized controlled pilot trial (NCT00332254).
        Osteoarthritis Cartilage. 2012; 20: 271-278https://doi.org/10.1016/j.joca.2011.12.009
        • Lieberthal J.
        • Sambamurthy N.
        • Scanzello C.R.
        Inflammation in joint injury and post-traumatic osteoarthritis.
        Osteoarthritis Cartilage. 2015; 23: 1825-1834https://doi.org/10.1016/j.joca.2015.08.015
        • Wang L.J.
        • Zeng N.
        • Yan Z.P.
        • Li J.T.
        • Ni G.X.
        Post-traumatic osteoarthritis following ACL injury.
        Arthritis Res Ther. 2020; 22: 57https://doi.org/10.1186/s13075-020-02156-5
        • Mabey T.
        • Honsawek S.
        Cytokines as biochemical markers for knee osteoarthritis.
        World J Orthop. 2015; 6: 95-105https://doi.org/10.5312/wjo.v6.i1.95
        • Ajrawat P.
        • Dwyer T.
        • Chahal J.
        Autologous interleukin 1 receptor antagonist blood-derived products for knee osteoarthritis: A systematic review.
        Arthroscopy. 2019; 35: 2211-2221https://doi.org/10.1016/j.arthro.2018.12.035
        • Caron J.P.
        • Fernandes J.C.
        • Martel-Pelletier J.
        • et al.
        Chondroprotective effect of intraarticular injections of interleukin-1 receptor antagonist in experimental osteoarthritis. Suppression of collagenase-1 expression.
        Arthritis Rheum. 1996; 39: 1535-1544https://doi.org/10.1002/art.1780390914
        • Jiang Y.
        • Genant H.K.
        • Watt I.
        • et al.
        A multicenter, double-blind, dose-ranging, randomized, placebo-controlled study of recombinant human interleukin-1 receptor antagonist in patients with rheumatoid arthritis: Radiologic progression and correlation of Genant and Larsen scores.
        Arthritis Rheum. 2000; 43: 1001-1009https://doi.org/10.1002/1529-0131(200005)43:5<1001::AID-ANR7>3.0.CO;2-P
        • Seckinger P.
        • Klein-Nulend J.
        • Alander C.
        • Thompson R.C.
        • Dayer J.M.
        • Raisz L.G.
        Natural and recombinant human IL-1 receptor antagonists block the effects of IL-1 on bone resorption and prostaglandin production.
        J Immunol. 1990; 145: 4181-4184
        • Moher D.
        • Liberati A.
        • Tetzlaff J.
        • Altman D.G.
        • PRISMA Group
        Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement.
        PLoS Med. 2009; 6e1000097https://doi.org/10.1371/journal.pmed.1000097
        • Jotanovic Z.
        • Mihelic R.
        • Sestan B.
        • Dembic Z.
        Role of interleukin-1 inhibitors in osteoarthritis: An evidence-based review.
        Drugs Aging. 2012; 29: 343-358https://doi.org/10.2165/11599350-000000000-00000
        • Nixon A.J.
        • Grol M.W.
        • Lang H.M.
        • et al.
        Disease-modifying osteoarthritis treatment with interleukin-1 receptor antagonist gene therapy in small and large animal models.
        Arthritis Rheumatol. 2018; 70: 1757-1768https://doi.org/10.1002/art.40668
        • Stone A.
        • Grol M.W.
        • Ruan M.Z.C.
        • et al.
        Combinatorial Prg4 and Il-1ra gene therapy protects against hyperalgesia and cartilage degeneration in post-traumatic osteoarthritis.
        Hum Gene Ther. 2019; 30: 225-235https://doi.org/10.1089/hum.2018.106
        • Wang H jun
        • long Yu C.
        • Kishi H.
        • Motoki K.
        • Mao Z bin
        • Muraguchi A.
        Suppression of experimental osteoarthritis by adenovirus-mediated double gene transfer.
        Chin Med J (Engl). 2006; 119: 1365-1373
        • Pelletier J.P.
        • Caron J.P.
        • Evans C.
        • et al.
        In vivo suppression of early experimental osteoarthritis by interleukin-1 receptor antagonist using gene therapy.
        Arthritis Rheum. 1997; 40: 1012-1019https://doi.org/10.1002/art.1780400604
        • Tang Q.
        • Hao L.
        • Peng Y.
        • et al.
        RNAi Silencing of IL-1β and TNF-α in the treatment of post-traumatic arthritis in rabbits.
        Chem Biol Drug Des. 2015; 86: 1466-1470https://doi.org/10.1111/cbdd.12611
        • Zhang X.
        • Mao Z.
        • Yu C.
        Suppression of early experimental osteoarthritis by gene transfer of interleukin-1 receptor antagonist and interleukin-10.
        J Orthop Res. 2004; 22: 742-750https://doi.org/10.1016/j.orthres.2003.12.007
        • Zhang X.
        • Yu C.
        • XuShi
        • Zhang C.
        • Tang T.
        • Dai K.
        Direct chitosan-mediated gene delivery to the rabbit knee joints in vitro and in vivo.
        Biochem Biophys Res Commun. 2006; 341: 202-208https://doi.org/10.1016/j.bbrc.2005.12.171
        • Zhang P.
        • Zhong Z.H.
        • Yu H.T.
        • Liu B.
        Exogenous expression of IL-1Ra and TGF-β1 promotes in vivo repair in experimental rabbit osteoarthritis.
        Scand J Rheumatol. 2015; 44: 404-411https://doi.org/10.3109/03009742.2015.1009942
        • Zhang L.
        • Peng H.
        • Feng M.
        • Zhang W.
        • Li Y.
        Yeast microcapsule-mediated oral delivery of IL-1β shRNA for post-traumatic osteoarthritis therapy.
        Mol Ther Nucleic Acids. 2021; 23: 336-346https://doi.org/10.1016/j.omtn.2020.11.006
        • Lin Y.
        • Ko C.
        • Liu S.
        • et al.
        miR-144-3p ameliorates the progression of osteoarthritis by targeting IL-1β: Potential therapeutic implications.
        J Cell Physiol. 2021; 236: 6988-7000
        • Khella C.M.
        • Asgarian R.
        • Horvath J.M.
        • Rolauffs B.
        • Hart M.L.
        An evidence-based systematic review of human knee post-traumatic osteoarthritis (PTOA): Timeline of clinical presentation and disease markers, comparison of knee joint PTOA models and early disease implications.
        Int J Mol Sci. 2021; 22: 1996https://doi.org/10.3390/ijms22041996
        • Bigoni M.
        • Sacerdote P.
        • Turati M.
        • et al.
        Acute and late changes in intraarticular cytokine levels following anterior cruciate ligament injury.
        J Orthop Res. 2013; 31: 315-321https://doi.org/10.1002/jor.22208
        • Irie K.
        • Uchiyama E.
        • Iwaso H.
        Intraarticular inflammatory cytokines in acute anterior cruciate ligament injured knee.
        Knee. 2003; 10: 93-96https://doi.org/10.1016/s0968-0160(02)00083-2
        • Watt F.E.
        • Paterson E.
        • Freidin A.
        • et al.
        Acute molecular changes in synovial fluid following human knee injury: Association with early clinical outcomes.
        Arthritis Rheumatol Hoboken NJ. 2016; 68: 2129-2140https://doi.org/10.1002/art.39677
        • Panina S.B.
        • Krolevets I.V.
        • Milyutina N.P.
        • et al.
        Circulating levels of proinflammatory mediators as potential biomarkers of post-traumatic knee osteoarthritis development.
        J Orthop Traumatol. 2017; 18: 349-357https://doi.org/10.1007/s10195-017-0473-8
        • Chevalier X.
        • Giraudeau B.
        • Conrozier T.
        • Marliere J.
        • Kiefer P.
        • Goupille P.
        Safety study of intraarticular injection of interleukin 1 receptor antagonist in patients with painful knee osteoarthritis: A multicenter study.
        J Rheumatol. 2005; 32: 1317-1323
        • Chevalier X.
        • Goupille P.
        • Beaulieu A.D.
        • et al.
        Intraarticular injection of anakinra in osteoarthritis of the knee: A multicenter, randomized, double-blind, placebo-controlled study.
        Arthritis Rheum. 2009; 61: 344-352https://doi.org/10.1002/art.24096
        • Martel-Pelletier J.
        • Pelletier J.P.
        Osteoarthritis: A single injection of anakinra for treating knee OA?.
        Nat Rev Rheumatol. 2009; 5: 363-364https://doi.org/10.1038/nrrheum.2009.121
        • Palmer D.J.
        • Ng P.
        Helper-dependent adenoviral vectors for gene therapy.
        Hum Gene Ther. 2005; 16: 1-16https://doi.org/10.1089/hum.2005.16.1
        • Pouton C.W.
        • Seymour L.W.
        Key issues in non-viral gene delivery.
        Adv Drug Deliv Rev. 1998; 34: 3-19https://doi.org/10.1016/s0169-409x(98)00048-9