Advertisement
Systematic Review| Volume 38, ISSUE 9, P2741-2758, September 2022

Download started.

Ok

Improved Accuracy of Coronal Alignment Can Be Attained Using 3D-Printed Patient-Specific Instrumentation for Knee Osteotomies: A Systematic Review of Level III and IV Studies

      Purpose

      To evaluate the accuracy and precision of postoperative coronal plane alignment using 3D-printed patient-specific instrumentation (PSI) in the setting of proximal tibial or distal femoral osteotomies.

      Methods

      A systematic review evaluating the accuracy of 3D-printed PSI for coronal plane alignment correcting knee osteotomies was performed. The primary outcomes were accuracy of coronal plane limb alignment correction and number of correction outliers. Secondary variables were duration of surgery, number of intraoperative fluoroscopic images, complications, cost, and clinical outcomes (as applicable).

      Results

      Ninety-three studies were identified, and 14 were included in the final analysis. Overall, mean postoperative deviation from target correction ranged from 0.3° to 1° for all studies using hip-knee angle measurements and 2.3% to 4.9% for all studies using weight-bearing line measurements. The incidence of correction outliers was assessed in 8 total studies and ranged from 0 to 25% (total n = 10 knees) of patients corrected with 3D-printed PSI. Osteotomies performed with 3D-printed cutting guides or wedges demonstrated significantly shorter operative times (P < .05) and fewer intraoperative fluoroscopic images (P < .05) than control groups in four case control studies.

      Conclusion

      Patients undergoing distal femoral osteotomy or proximal tibial osteotomy procedures with 3D-printed patient-specific cutting guides and wedges had highly accurate coronal plane alignment with a low rate of outliers. Patients treated with 3D printed PSI also demonstrated significantly shorter operative times and decreased intraoperative fluoroscopy when compared to conventional techniques.

      Level of Evidence

      Level IV, systematic review of Level III-IV studies
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Arthur A.
        • LaPrade R.F.
        • Agel J.
        Proximal tibial opening wedge osteotomy as the initial treatment for chronic posterolateral corner deficiency in the varus knee: A prospective clinical study.
        Am J Sports Med. 2007; 35: 1844-1850https://doi.org/10.1177/0363546507304717
        • Prodromos C.C.
        • Amendola A.
        • Jakob R.P.
        High tibial osteotomy: indications, techniques, and postoperative management.
        Instr Course Lect. 2015; 64: 555-565
        • Sherman S.L.
        • Thompson S.F.
        • Clohisy J.C.F.
        Distal femoral varus osteotomy for the management of valgus deformity of the knee.
        J Am Acad Orthop Surg. 2018; 26: 313-324https://doi.org/10.5435/JAAOS-D-16-00179
        • Bonasia D.E.
        • Governale G.
        • Spolaore S.
        • Rossi R.
        • Amendola A.
        High tibial osteotomy.
        Curr Rev Musculoskelet Med. 2014; 7: 292-301https://doi.org/10.1007/s12178-014-9234-y
        • Chahla J.
        • Dean C.S.
        • Mitchell J.J.
        • Moatshe G.
        • Serra Cruz R.
        • LaPrade R.F.
        Medial opening wedge proximal tibial osteotomy.
        Arthrosc Tech. 2016; 5: e919-e928https://doi.org/10.1016/j.eats.2016.04.019
        • Zaffagnini S.
        • Bonanzinga T.
        • Grassi A.
        • et al.
        Combined ACL reconstruction and closing-wedge HTO for varus angulated ACL-deficient knees.
        Knee Surg Sports Traumatol Arthrosc. 2013; 21: 934-941https://doi.org/10.1007/s00167-013-2400-8
        • Encinas-Ullán C.A.
        • Rodríguez-Merchán E.C.
        Isolated medial collateral ligament tears: An update on management.
        EFORT Open Rev. 2018; 3: 398-407https://doi.org/10.1302/2058-5241.3.170035
        • Laprade R.F.
        • Engebretsen L.
        • Johansen S.
        • Wentorf F.A.
        • Kurtenbach C.
        The effect of a proximal tibial medial opening wedge osteotomy on posterolateral knee instability: A biomechanical study.
        Am J Sports Med. 2008; 36: 956-960https://doi.org/10.1177/0363546507312380
        • Görtz S.
        • Bugbee W.
        Valgus malalignment: Diagnosis, osteotomy techniques, and clinical outcomes.
        in: Knee Disorders: Surgery, Rehabilitation, Clinical Outcomes. Mosby Elsevier, New York2009: 895-904
        • Losina E.
        • Katz J.N.
        Total knee arthroplasty on the rise in younger patients: Are we sure that past performance will guarantee future success?.
        Arthritis Rheum. 2012; 64: 339-341https://doi.org/10.1002/art.33371
        • Minzlaff P.
        • Feucht M.J.
        • Saier T.
        • et al.
        Can young and active patients participate in sports after osteochondral autologous transfer combined with valgus high tibial osteotomy?.
        Knee Surg Sports Traumatol Arthrosc. 2016; 24: 1594-1600https://doi.org/10.1007/s00167-014-3447-x
        • LaPrade R.F.
        • Spiridonov S.I.
        • Nystrom L.M.
        • Jansson K.S.
        Prospective outcomes of young and middle-aged adults with medial compartment osteoarthritis treated with a proximal tibial opening wedge osteotomy.
        Arthroscopy. 2012; 28: 354-364https://doi.org/10.1016/j.arthro.2011.08.310
        • Kunze K.N.
        • Beletsky A.
        • Hannon C.P.
        • et al.
        Return to work and sport after proximal tibial osteotomy and the effects of opening versus closing wedge techniques on adverse outcomes: A systematic review and meta-analysis.
        Am J Sports Med. 2020; 48: 2295-2304https://doi.org/10.1177/0363546519881638
        • Hoorntje A.
        • van Ginneken B.T.
        • Kuijer P.P.F.M.
        • et al.
        Eight respectively nine out of ten patients return to sport and work after distal femoral osteotomy.
        Knee Surg Sports Traumatol Arthrosc. 2019; 27: 2345-2353https://doi.org/10.1007/s00167-018-5206-x
        • Brinkman J.M.
        • Lobenhoffer P.
        • Agneskirchner J.D.
        • Staubli A.E.
        • Wymenga A.B.
        • van Heerwaarden R.J.
        Osteotomies around the knee: Patient selection, stability of fixation and bone healing in high tibial osteotomies.
        J Bone Joint Surg Br. 2008; 90: 1548-1557https://doi.org/10.1302/0301-620X.90B12.21198
        • Moore J.
        • Mychaltchouk L.
        • Lavoie F.
        Applicability of a modified angular correction measurement method for open-wedge high tibial osteotomy.
        Knee Surg Sports Traumatol Arthrosc. 2017; 25: 846-852https://doi.org/10.1007/s00167-015-3954-4
        • Noyes F.R.
        Editorial Commentary: Measurements for successful high tibial osteotomy: Understanding supine versus standing and intraoperative fluoroscopic alignment is required.
        Arthroscopy. 2020; 36: 1665-1669https://doi.org/10.1016/j.arthro.2020.03.018
        • Shivji F.S.
        • Foster A.
        • Risebury M.J.
        • Wilson A.J.
        • Yasen S.K.
        Ten-year survival rate of 89% after distal femoral osteotomy surgery for lateral compartment osteoarthritis of the knee.
        Knee Surg Sports Traumatol Arthrosc. 2021; 29: 594-599https://doi.org/10.1007/s00167-020-05988-5
        • Çalbıyık M.
        Clinical outcome of total knee arthroplasty performed using patient-specific cutting guides.
        Med Sci Monit. 2017; 23: 6168-6173https://doi.org/10.12659/MSM.908213
        • Campana V.
        • Cardona V.
        • Vismara V.
        • et al.
        3D printing in shoulder surgery.
        Orthop Rev (Pavia). 2020; 12: 8681https://doi.org/10.4081/or.2020.8681
        • Jud L.
        • Vlachopoulos L.
        • Beeler S.
        • Tondelli T.
        • Fürnstahl P.
        • Fucentese S.F.
        Accuracy of three dimensional-planned patient-specific instrumentation in femoral and tibial rotational osteotomy for patellofemoral instability.
        Int Orthop. 2020; 44: 1711-1717https://doi.org/10.1007/s00264-020-04496-y
        • Vlachopoulos L.
        • Schweizer A.
        • Graf M.
        • Nagy L.
        • Fürnstahl P.
        Three-dimensional postoperative accuracy of extra-articular forearm osteotomies using CT-scan based patient-specific surgical guides.
        BMC Musculoskelet Disord. 2015; 16: 336https://doi.org/10.1186/s12891-015-0793-x
        • Weigelt L.
        • Fürnstahl P.
        • Hirsiger S.
        • Vlachopoulos L.
        • Espinosa N.
        • Wirth S.H.
        Three-dimensional correction of complex ankle deformities with computer-assisted planning and patient-specific surgical guides.
        J Foot Ankle Surg. 2017; 56: 1158-1164https://doi.org/10.1053/j.jfas.2017.05.025
        • Zheng P.
        • Xu P.
        • Yao Q.
        • Tang K.
        • Lou Y.
        3D-printed navigation template in proximal femoral osteotomy for older children with developmental dysplasia of the hip.
        Sci Rep. 2017; 7: 44993https://doi.org/10.1038/srep44993
        • Moher D.
        • Liberati A.
        • Tetzlaff J.
        • Altman D.G.
        • PRISMA Group
        Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.
        PLoS Med. 2009; 6e1000097https://doi.org/10.1371/journal.pmed.1000097
        • Slim K.
        • Nini E.
        • Forestier D.
        • Kwiatkowski F.
        • Panis Y.
        • Chipponi J.
        Methodological index for non-randomized studies (MINORS): Development and validation of a new instrument: Methodological index for non-randomized studies.
        ANZ J Surg. 2003; 73: 712-716https://doi.org/10.1046/j.1445-2197.2003.02748.x
        • Coleman B.D.
        • Khan K.M.
        • Maffulli N.
        • Cook J.L.
        • Wark J.D.
        Studies of surgical outcome after patellar tendinopathy: clinical significance of methodological deficiencies and guidelines for future studies: Surgical outcome of patellar tendinopathy.
        Scand J Med Sci Sports. 2000; 10: 2-11https://doi.org/10.1034/j.1600-0838.2000.010001002.x
        • Ramponi L.
        • Yasui Y.
        • Murawski C.D.
        • et al.
        Lesion size is a predictor of clinical outcomes after bone marrow stimulation for osteochondral lesions of the talus: A systematic review.
        Am J Sports Med. 2017; 45: 1698-1705https://doi.org/10.1177/0363546516668292
        • Chaouche S.
        • Jacquet C.
        • Fabre-Aubrespy M.
        • et al.
        Patient-specific cutting guides for open-wedge high tibial osteotomy: Safety and accuracy analysis of a hundred patients continuous cohort.
        Int Orthop. 2019; 43: 2757-2765https://doi.org/10.1007/s00264-019-04372-4
        • Fucentese S.F.
        • Meier P.
        • Jud L.
        • et al.
        Accuracy of 3D-planned patient specific instrumentation in high tibial open wedge valgisation osteotomy.
        J Exp Orthop. 2020; 7: 7https://doi.org/10.1186/s40634-020-00224-y
        • Munier M.
        • Donnez M.
        • Ollivier M.
        • et al.
        Can three-dimensional patient-specific cutting guides be used to achieve optimal correction for high tibial osteotomy? Pilot study.
        Orthop Traumatol Surg Res. 2017; 103: 245-250https://doi.org/10.1016/j.otsr.2016.11.020
        • Pérez-Mañanes R.
        • Burró J.
        • Manaute J.
        • Rodriguez F.
        • Martín J.
        3D surgical printing cutting guides for open-wedge high tibial osteotomy: Do it yourself.
        J Knee Surg. 2016; 29: 690-695https://doi.org/10.1055/s-0036-1572412
        • Predescu V.
        • Grosu A.M.
        • Gherman I.
        • Prescura C.
        • Hiohi V.
        • Deleanu B.
        Early experience using patient-specific instrumentation in opening wedge high tibial osteotomy.
        Int Orthop. 2021; 45: 1509-1515https://doi.org/10.1007/s00264-021-04964-z
        • Kim H.J.
        • Park J.
        • Park K.H.
        • et al.
        Evaluation of accuracy of a three-dimensional printed model in open-wedge high tibial osteotomy.
        J Knee Surg. 2019; 32: 841-846https://doi.org/10.1055/s-0038-1669901
        • Kim H.J.
        • Park J.
        • Shin J.Y.
        • Park I.H.
        • Park K.H.
        • Kyung H.S.
        More accurate correction can be obtained using a three-dimensional printed model in open-wedge high tibial osteotomy.
        Knee Surg Sports Traumatol Arthrosc. 2018; 26: 3452-3458https://doi.org/10.1007/s00167-018-4927-1
        • Yang J.C.S.
        • Chen C.F.
        • Luo C.A.
        • et al.
        Clinical experience using a 3D-printed patient-specific instrument for medial opening wedge high tibial osteotomy.
        BioMed Res Int. 2018; 2018: 1-9https://doi.org/10.1155/2018/9246529
        • Arnal-Burró J.
        • Pérez-Mañanes R.
        • Gallo-del-Valle E.
        • Igualada-Blazquez C.
        • Cuervas-Mons M.
        • Vaquero-Martín J.
        Three dimensional-printed patient-specific cutting guides for femoral varization osteotomy: Do it yourself.
        Knee. 2017; 24: 1359-1368https://doi.org/10.1016/j.knee.2017.04.016
        • Jacquet C.
        • Chan-Yu-Kin J.
        • Sharma A.
        • Argenson J.N.
        • Parratte S.
        • Ollivier M.
        More accurate correction using “patient-specific” cutting guides in opening wedge distal femur varization osteotomies.
        Int Orthop. 2019; 43: 2285-2291https://doi.org/10.1007/s00264-018-4207-1
        • Victor J.
        • Premanathan A.
        Virtual 3D planning and patient specific surgical guides for osteotomies around the knee: a feasibility and proof-of-concept study.
        Bone Jt J. 2013; 95-B: 153-158https://doi.org/10.1302/0301-620X.95B11.32950
        • Shi J.
        • Lv W.
        • Wang Y.
        • et al.
        Three dimensional patient-specific printed cutting guides for closing-wedge distal femoral osteotomy.
        Int Orthop. 2019; 43: 619-624https://doi.org/10.1007/s00264-018-4043-3
        • Tardy N.
        • Steltzlen C.
        • Bouguennec N.
        • et al.
        Is patient-specific instrumentation more precise than conventional techniques and navigation in achieving planned correction in high tibial osteotomy?.
        Orthop Traumatol Surg Res. 2020; 106: S231-S236https://doi.org/10.1016/j.otsr.2020.08.009
        • Van Genechten W.
        • Van Tilborg W.
        • Van den Bempt M.
        • Van Haver A.
        • Verdonk P.
        Feasibility and 3D planning of a novel patient-specific instrumentation technique in medial opening-wedge high tibial osteotomy.
        J Knee Surg. 2021; 34: 1560-1569https://doi.org/10.1055/s-0040-1710379
        • Lal H.
        • Patralekh M.K.
        3D printing and its applications in orthopaedic trauma: A technological marvel.
        J Clin Orthop Trauma. 2018; 9: 260-268https://doi.org/10.1016/j.jcot.2018.07.022
        • Wixted C.M.
        • Peterson J.R.
        • Kadakia R.J.
        • Adams S.B.
        Three-dimensional printing in orthopaedic surgery: Current applications and future developments.
        JAAOS Glob Res Rev. 2021; 5 (00230-11): e20https://doi.org/10.5435/JAAOSGlobal-D-20-00230
        • Mitsouras D.
        • Liacouras P.
        • Imanzadeh A.
        • et al.
        Medical 3D printing for the radiologist.
        RadioGraphics. 2015; 35: 1965-1988https://doi.org/10.1148/rg.2015140320
        • Gross B.C.
        • Erkal J.L.
        • Lockwood S.Y.
        • Chen C.
        • Spence D.M.
        Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences.
        Anal Chem. 2014; 86: 3240-3253https://doi.org/10.1021/ac403397r
        • Eltorai A.E.M.
        • Nguyen E.
        • Daniels A.H.
        Three-dimensional printing in orthopedic surgery. Lindeque BGP.
        Orthopedics. 2015; 38: 684-687https://doi.org/10.3928/01477447-20151016-05
        • Dutton A.Q.
        • Yeo S.J.
        • Yang K.Y.
        • Lo N.N.
        • Chia K.U.
        • Chong H.C.
        Computer-assisted minimally invasive total knee arthroplasty compared with standard total knee arthroplasty: A prospective, randomized study.
        J Bone Jt Surg-Am. 2008; 90: 2-9https://doi.org/10.2106/JBJS.F.01148
        • Jones G.G.
        • Jaere M.
        • Clarke S.
        • Cobb J.
        3D printing and high tibial osteotomy.
        EFORT Open Rev. 2018; 3: 254-259https://doi.org/10.1302/2058-5241.3.170075
        • Cerciello S.
        • Ollivier M.
        • Corona K.
        • Kaocoglu B.
        • Seil R.
        CAS and PSI increase coronal alignment accuracy and reduce outliers when compared to traditional technique of medial open wedge high tibial osteotomy: A meta-analysis.
        Knee Surg Sports Traumatol Arthrosc. 2022; 30: 555-566https://doi.org/10.1007/s00167-020-06253-5
        • Noyes F.R.
        • Barber-Westin S.D.
        Tibial and femoral osteotomy for varus and valgus knee syndromes.
        in: Noyes’ Knee Disorders: Surgery, Rehabilitation, Clinical Outcomes. Elsevier, New York2017: 773-847https://doi.org/10.1016/B978-0-323-32903-3.00026-3
        • Aglietti P.
        • Buzzi R.
        • Vena L.M.
        • Baldini A.
        • Mondaini A.
        High tibial valgus osteotomy for medial gonarthrosis: A 10- to 21-year study.
        J Knee Surg. 2003; 16: 21-26
        • Flecher X.
        • Parratte S.
        • Aubaniac J.M.
        • Argenson J.N.A.
        A 12-28-year followup study of closing wedge high tibial osteotomy.
        Clin Orthop. 2006; 452: 91-96https://doi.org/10.1097/01.blo.0000229362.12244.f6
        • Kim J.H.
        • Kim H.J.
        • Celik H.
        • Kim J.H.
        • Lee D.H.
        Change in adduction moment following medial open wedge high tibial osteotomy: a meta-analysis.
        BMC Musculoskelet Disord. 2019; 20: 102https://doi.org/10.1186/s12891-019-2472-9
        • Slevin O.
        • Ayeni O.R.
        • Hinterwimmer S.
        • Tischer T.
        • Feucht M.J.
        • Hirschmann M.T.
        The role of bone void fillers in medial opening wedge high tibial osteotomy: A systematic review.
        Knee Surg Sports Traumatol Arthrosc. 2016; 24: 3584-3598https://doi.org/10.1007/s00167-016-4297-5
        • Han J.H.
        • Kim H.J.
        • Song J.G.
        • et al.
        Locking plate versus non-locking plate in open-wedge high tibial osteotomy: A meta-analysis.
        Knee Surg Sports Traumatol Arthrosc. 2017; 25: 808-816https://doi.org/10.1007/s00167-015-3850-y
        • Kyung B.S.
        • Kim J.G.
        • Jang K.M.
        • et al.
        Are navigation systems accurate enough to predict the correction angle during high tibial osteotomy?: Comparison of navigation systems with 3-dimensional computed tomography and standing radiographs.
        Am J Sports Med. 2013; 41: 2368-2374https://doi.org/10.1177/0363546513498062
        • Thanni L.O.A.
        • Aigoro N.O.
        Surgical site infection complicating internal fixation of fractures: Incidence and risk factors.
        J Natl Med Assoc. 2004; 96: 1070-1072