Advertisement

Localized Anterior Arthrofibrosis After Soft-Tissue Quadriceps Tendon Anterior Cruciate Ligament Reconstruction Is More Common in Patients Who Are Female, Undergo Meniscal Repair, and Have Grafts of Larger Diameter

Published:December 28, 2022DOI:https://doi.org/10.1016/j.arthro.2022.11.027

      Purpose

      To determine factors associated with localized anterior arthrofibrosis (cyclops lesion), such as graft size, warranting early reoperation for lysis of adhesions after anterior cruciate ligament reconstruction (ACLR) with all–soft tissue quadriceps tendon (ASTQT) autograft.

      Methods

      All primary ASTQT autograft ACLRs within a single surgeon’s prospectively collected registry with minimum 6-month follow-up were included. Patients who underwent multiligament knee reconstruction or cartilage restoration procedures were excluded. Localized anterior arthrofibrosis was defined as the requirement for a second procedure to achieve debridement and lysis of adhesions owing to the inability to regain terminal extension within 6 months of ACLR. The sex-specific incidence of arthrofibrosis was evaluated relative to age, weight, femoral and tibial tunnel sizes, meniscal repair, and meniscectomy by a binary logistic regression.

      Results

      This study included 721 patients (46% female patients). There were 52 cases of localized anterior arthrofibrosis (7.2%). Female patients had a greater incidence of arthrofibrosis than male patients. Male patients with a femoral tunnel diameter of 9.25 mm or greater had an increased incidence of arthrofibrosis compared with those with a diameter of less than 9.25 mm, whereas a similar cutoff was not found to be statistically significant for female patients. Concomitant meniscal repair was associated with an increased risk of arthrofibrosis.

      Conclusions

      Female sex and concomitant meniscal repair were associated with an increased localized anterior arthrofibrosis incidence. Furthermore, ASTQT with a femoral tunnel diameter of 9.25 mm or greater in male patients was associated with an increased incidence of arthrofibrosis.

      Level of Evidence

      Level III, retrospective, comparative prognostic trial.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cosgarea A.J.
        • Sebastianelli W.J.
        • DeHaven K.E.
        Prevention of arthrofibrosis after anterior cruciate ligament reconstruction using the central third patellar tendon autograft.
        Am J Sports Med. 1995; 23: 87-92
        • Shelbourne K.D.
        • Johnson G.E.
        Outpatient surgical management of arthrofibrosis after anterior cruciate ligament surgery.
        Am J Sports Med. 1994; 22: 192-197
        • Kalson N.S.
        • Borthwick L.A.
        • Mann D.A.
        • et al.
        International consensus on the definition and classification of fibrosis of the knee joint.
        Bone Joint J. 2016; 98-b: 1479-1488
        • Shelbourne K.D.
        • Wilckens J.H.
        • Mollabashy A.
        • DeCarlo M.
        Arthrofibrosis in acute anterior cruciate ligament reconstruction. The effect of timing of reconstruction and rehabilitation.
        Am J Sports Med. 1991; 19: 332-336
        • Shelbourne K.D.
        • Patel D.V.
        Treatment of limited motion after anterior cruciate ligament reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 1999; 7: 85-92
        • Magit D.
        • Wolff A.
        • Sutton K.
        • Medvecky M.J.
        Arthrofibrosis of the knee.
        J Am Acad Orthop Surg. 2007; 15: 682-694
        • Shelbourne K.D.
        • Patel D.V.
        • Martini D.J.
        Classification and management of arthrofibrosis of the knee after anterior cruciate ligament reconstruction.
        Am J Sports Med. 1996; 24: 857-862
        • Mayr H.O.
        • Weig T.G.
        • Plitz W.
        Arthrofibrosis following ACL reconstruction—Reasons and outcome.
        Arch Orthop Trauma Surg. 2004; 124: 518-522
        • Kocher M.S.
        • Steadman J.R.
        • Briggs K.
        • Zurakowski D.
        • Sterett W.I.
        • Hawkins R.J.
        Determinants of patient satisfaction with outcome after anterior cruciate ligament reconstruction.
        J Bone Joint Surg Am. 2002; 84: 1560-1572
        • Harner C.D.
        • Irrgang J.J.
        • Paul J.
        • Dearwater S.
        • Fu F.H.
        Loss of motion after anterior cruciate ligament reconstruction.
        Am J Sports Med. 1992; 20: 499-506
        • Stiefel E.C.
        • McIntyre L.
        Arthroscopic lysis of adhesions for treatment of post-traumatic arthrofibrosis of the knee joint.
        Arthrosc Tech. 2017; 6: e939-e944
        • Kambhampati S.B.S.
        • Gollamudi S.
        • Shanmugasundaram S.
        • Josyula V.V.S.
        Cyclops lesions of the knee: A narrative review of the literature.
        Orthop J Sports Med. 2020; 8 (2325967120945671)
        • Nwachukwu B.U.
        • McFeely E.D.
        • Nasreddine A.
        • et al.
        Arthrofibrosis after anterior cruciate ligament reconstruction in children and adolescents.
        J Pediatr Orthop. 2011; 31: 811-817
        • Fisher S.E.
        • Shelbourne K.D.
        Arthroscopic treatment of symptomatic extension block complicating anterior cruciate ligament reconstruction.
        Am J Sports Med. 1993; 21: 558-564
        • Sanders T.L.
        • Kremers H.M.
        • Bryan A.J.
        • Kremers W.K.
        • Stuart M.J.
        • Krych A.J.
        Procedural intervention for arthrofibrosis after ACL reconstruction: Trends over two decades.
        Knee Surg Sports Traumatol Arthrosc. 2017; 25: 532-537
        • Mauro C.S.
        • Irrgang J.J.
        • Williams B.A.
        • Harner C.D.
        Loss of extension following anterior cruciate ligament reconstruction: Analysis of incidence and etiology using IKDC criteria.
        Arthroscopy. 2008; 24: 146-153
        • Petsche T.S.
        • Hutchinson M.R.
        Loss of extension after reconstruction of the anterior cruciate ligament.
        J Am Acad Orthop Surg. 1999; 7: 119-127
        • Romano V.M.
        • Graf B.K.
        • Keene J.S.
        • Lange R.H.
        Anterior cruciate ligament reconstruction. The effect of tibial tunnel placement on range of motion.
        Am J Sports Med. 1993; 21: 415-418
        • Yaru N.C.
        • Daniel D.M.
        • Penner D.
        The effect of tibial attachment site on graft impingement in an anterior cruciate ligament reconstruction.
        Am J Sports Med. 1992; 20: 217-220
        • Markolf K.L.
        • Hame S.
        • Hunter D.M.
        • et al.
        Effects of femoral tunnel placement on knee laxity and forces in an anterior cruciate ligament graft.
        J Orthop Res. 2002; 20: 1016-1024
        • Su A.W.
        • Storey E.P.
        • Lin S.C.
        • et al.
        Association of the graft size and arthrofibrosis in young patients after primary anterior cruciate ligament reconstruction.
        J Am Acad Orthop Surg. 2018; 26: e483-e489
        • Middleton K.K.
        • Hamilton T.
        • Irrgang J.J.
        • Karlsson J.
        • Harner C.D.
        • Fu F.H.
        Anatomic anterior cruciate ligament (ACL) reconstruction: A global perspective. Part 1.
        Knee Surg Sports Traumatol Arthrosc. 2014; 22: 1467-1482
        • van Eck C.F.
        • Schreiber V.M.
        • Mejia H.A.
        • et al.
        "Anatomic" anterior cruciate ligament reconstruction: A systematic review of surgical techniques and reporting of surgical data.
        Arthroscopy. 2010; 26: S2-S12
        • Hogan D.W.
        • Burch M.B.
        • Rund J.M.
        • et al.
        No difference in complication rates or patient-reported outcomes between bone-patella tendon-bone and quadriceps tendon autograft for anterior cruciate ligament reconstruction.
        Arthrosc Sports Med Rehabil. 2022; 4: e417-e424
        • Mehran N.
        • Damodar D.
        • Shu Yang J.
        Quadriceps tendon autograft in anterior cruciate ligament reconstruction.
        J Am Acad Orthop Surg. 2020; 28: 45-52
        • Mouarbes D.
        • Menetrey J.
        • Marot V.
        • Courtot L.
        • Berard E.
        • Cavaignac E.
        Anterior cruciate ligament reconstruction: A systematic review and meta-analysis of outcomes for quadriceps tendon autograft versus bone-patellar tendon-bone and hamstring-tendon autografts.
        Am J Sports Med. 2019; 47: 3531-3540
        • Slone H.S.
        • Ashford W.B.
        • Xerogeanes J.W.
        Minimally invasive quadriceps tendon harvest and graft preparation for all-inside anterior cruciate ligament reconstruction.
        Arthrosc Tech. 2016; 5: e1049-e1056
        • Xerogeanes J.W.
        • Hammond K.E.
        • Todd D.C.
        Anatomic landmarks utilized for physeal-sparing, anatomic anterior cruciate ligament reconstruction: An MRI-based study.
        J Bone Joint Surg Am. 2012; 94: 268-276
        • Hunnicutt J.L.
        • Xerogeanes J.W.
        • Tsai L.C.
        • et al.
        Terminal knee extension deficit and female sex predict poorer quadriceps strength following ACL reconstruction using all-soft tissue quadriceps tendon autografts.
        Knee Surg Sports Traumatol Arthrosc. 2021; 29: 3085-3095
        • Campbell T.M.
        • Trudel G.
        • Conaghan P.G.
        • Reilly K.
        • Feibel R.J.
        • McGonagle D.
        Flexion contracture is associated with knee joint degeneration on magnetic resonance imaging: Data from the Osteoarthritis Initiative.
        Clin Exp Rheumatol. 2022; 40: 993-998
        • Youden W.J.
        Index for rating diagnostic tests.
        Cancer. 1950; 3: 32-35
        • Csintalan R.P.
        • Inacio M.C.
        • Funahashi T.T.
        • Maletis G.B.
        Risk factors of subsequent operations after primary anterior cruciate ligament reconstruction.
        Am J Sports Med. 2014; 42: 619-625
        • Huleatt J.
        • Gottschalk M.
        • Fraser K.
        • et al.
        Risk factors for manipulation under anesthesia and/or lysis of adhesions after anterior cruciate ligament reconstruction.
        Orthop J Sports Med. 2018; 6 (2325967118794490)
        • Charlton W.P.
        • St John T.A.
        • Ciccotti M.G.
        • Harrison N.
        • Schweitzer M.
        Differences in femoral notch anatomy between men and women: A magnetic resonance imaging study.
        Am J Sports Med. 2002; 30: 329-333
        • Slauterbeck J.R.
        • Hardy D.M.
        Sex hormones and knee ligament injuries in female athletes.
        Am J Med Sci. 2001; 322: 196-199
        • Zeichen J.
        • Haeder L.
        • Jagodzinski M.
        • Lobenhoffer P.
        • Bosch U.
        • Brand J.
        Lokalisation von TGF-beta und PDGF und deren Bedeutung für die Pathogenese der Arthrofibrose [Localisation of TGF-beta and PDGF and their relevance for the pathogenesis of arthrofibrosis].
        Unfallchirurg. 2008; 111 ([in German]): 79-84
        • Magnussen R.A.
        • Lawrence J.T.
        • West R.L.
        • Toth A.P.
        • Taylor D.C.
        • Garrett W.E.
        Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft.
        Arthroscopy. 2012; 28: 526-531
        • Conte E.J.
        • Hyatt A.E.
        • Gatt Jr., C.J.
        • Dhawan A.
        Hamstring autograft size can be predicted and is a potential risk factor for anterior cruciate ligament reconstruction failure.
        Arthroscopy. 2014; 30: 882-890
        • Bickel B.A.
        • Fowler T.T.
        • Mowbray J.G.
        • Adler B.
        • Klingele K.
        • Phillips G.
        Preoperative magnetic resonance imaging cross-sectional area for the measurement of hamstring autograft diameter for reconstruction of the adolescent anterior cruciate ligament.
        Arthroscopy. 2008; 24: 1336-1341
        • Pinczewski L.A.
        • Deehan D.J.
        • Salmon L.J.
        • Russell V.J.
        • Clingeleffer A.
        A five-year comparison of patellar tendon versus four-strand hamstring tendon autograft for arthroscopic reconstruction of the anterior cruciate ligament.
        Am J Sports Med. 2002; 30: 523-536
        • Xerogeanes J.W.
        Quadriceps tendon graft for anterior cruciate ligament reconstruction: The graft of the future!.
        Arthroscopy. 2019; 35: 696-697
        • Slone H.S.
        • Romine S.E.
        • Premkumar A.
        • Xerogeanes J.W.
        Quadriceps tendon autograft for anterior cruciate ligament reconstruction: A comprehensive review of current literature and systematic review of clinical results.
        Arthroscopy. 2015; 31: 541-554
        • Harris N.L.
        • Smith D.A.
        • Lamoreaux L.
        • Purnell M.
        Central quadriceps tendon for anterior cruciate ligament reconstruction. Part I: Morphometric and biomechanical evaluation.
        Am J Sports Med. 1997; 25: 23-28
        • Cristiani R.
        • Sarakatsianos V.
        • Engström B.
        • Samuelsson K.
        • Forssblad M.
        • Stålman A.
        Increased knee laxity with hamstring tendon autograft compared to patellar tendon autograft: A cohort study of 5462 patients with primary anterior cruciate ligament reconstruction.
        Knee Surg Sports Traumatol Arthrosc. 2019; 27: 381-388