Advertisement

A More Posterior Tibial Tubercle (Decreased Sagittal Tibial Tubercle–Trochlear Groove Distance) Is Significantly Associated With Patellofemoral Joint Degenerative Cartilage Change: A Deep Learning Analysis

Published:December 26, 2022DOI:https://doi.org/10.1016/j.arthro.2022.11.040

      Purpose

      To perform patellofemoral joint (PFJ) geometric measurements on knee magnetic resonance imaging scans and determine their relations with chondral lesions in a multicenter cohort using deep learning.

      Methods

      The sagittal tibial tubercle–trochlear groove (sTTTG) distance, tibial tubercle–trochlear groove distance, trochlear sulcus angle, trochlear depth, Caton-Deschamps Index (CDI), and flexion angle were measured by use of deep learning–generated segmentations on a subset of the Osteoarthritis Initiative study with radiologist-graded PFJ cartilage grades (n = 2,461). Kruskal-Wallis H tests were performed to compare differences in PFJ morphology between subjects without PFJ osteoarthritis (OA) and those with PFJ OA. PFJ morphology was correlated with secondary outcomes of mean patellar cartilage thickness and mean patellar cartilage T2 relaxation time using linear regression models controlling for age, sex, and body mass index.

      Results

      A total of 1,626 knees did not have PFJ OA, whereas 835 knees had PFJ OA. Knees without PFJ OA had an increased (anterior) sTTTG distance (mean ± standard deviation, 11.1 ± 12.8 mm) compared with knees with PFJ OA (8.4 ± 12.7 mm) (P < .001), indicating a more posterior tibial tubercle in subjects with PFJ OA. Knees without PFJ OA had a decreased sulcus angle (127.4° ± 7.1° vs 128.0° ± 8.4°, P = .01) and increased trochlear depth (9.1 ± 1.7 mm vs 9.0 ± 2.0 mm, P = .03) compared with knees with PFJ OA. Decreased patellar cartilage thickness was associated with decreased trochlear depth (β = 0.12, P = .002) and increased CDI (β = –0.07, P < .001). Increased patellar cartilage T2 relaxation time was correlated with decreased sTTTG distance (β = –0.08, P = .01), decreased sulcus angle (β = –0.12, P = .04), and decreased CDI (β = –0.12, P < .001).

      Conclusions

      PFJ OA, patellar cartilage thickness, and patellar cartilage T2 relaxation time were shown to be associated with the underlying geometries within the PFJ. This large longitudinal study highlights that a decreased sTTTG distance (i.e., a more posterior tibial tubercle) is significantly associated with PFJ degenerative cartilage change.

      Level of Evidence

      Level III, retrospective comparative prognostic trial.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Yang G.Y.
        • Guo H.L.
        • Li T.
        • Shang H.B.
        • Zhao Y.F.
        • Shi Y.Y.
        The medial compartment and patellofemoral joint degenerate more severely in early stage knee osteoarthritis: A cross-sectional study.
        Eur Rev Med Pharmacol Sci. 2020; 24: 9815-9823
        • Van Spil W.E.
        • Kubassova O.
        • Boesen M.
        • Bay-Jensen A.C.
        • Mobasheri A.
        Osteoarthritis phenotypes and novel therapeutic targets.
        Biochem Pharmacol. 2019; 165: 41-48
        • Stoddart J.C.
        • Dandridge O.
        • Garner A.
        • Cobb J.
        • van Arkel R.J.
        The compartmental distribution of knee osteoarthritis—A systematic review and meta-analysis.
        Osteoarthritis Cartilage. 2021; 29: 445-455
        • Patel R.M.
        • Wright-Chisem J.
        • Williams R.J.
        Anteriorizing tibial tubercle osteotomy for patellofemoral cartilage lesions.
        Arthrosc Tech. 2021; 10: e2181-e2187
        • Sherman S.L.
        • Humpherys J.
        • Farr J.
        Optimizing patellofemoral cartilage restoration and instability with tibial tubercle osteotomy.
        Arthroscopy. 2019; 35: 2255-2256
        • Lansdown D.A.
        • Christian D.
        • Madden B.
        • et al.
        The sagittal tibial tubercle–trochlear groove distance as a measurement of sagittal imbalance in patients with symptomatic patellofemoral chondral lesions.
        Cartilage. 2021; 13: 449S-455S
        • Tanaka M.J.
        • D’Amore T.
        • Elias J.J.
        • Thawait G.
        • Demehri S.
        • Cosgarea A.J.
        Anteroposterior distance between the tibial tuberosity and trochlear groove in patients with patellar instability.
        Knee. 2019; 26: 1278-1285
        • Kaplan D.J.
        • Mojica E.S.
        • Ortega P.F.
        • et al.
        Posterior tibial tubercle measured by the sagittal TT-TG distance correlates with increased risk for patellofemoral chondral lesions.
        Knee Surg Sports Traumatol Arthrosc. 2022; 30: 3733-3741
        • Gan H.S.
        • Ramlee M.H.
        • Wahab A.A.
        • Lee Y.S.
        • Shimizu A.
        From classical to deep learning: Review on cartilage and bone segmentation techniques in knee osteoarthritis research.
        Artif Intell Rev. 2021; 54: 2445-2494
        • Calivà F.
        • Namiri N.K.
        • Dubreuil M.
        • Pedoia V.
        • Ozhinsky E.
        • Majumdar S.
        Studying osteoarthritis with artificial intelligence applied to magnetic resonance imaging.
        Nat Rev Rheumatol. 2022; 18: 112-121
        • Mohajer B.
        • Dolatshahi M.
        • Moradi K.
        • et al.
        Role of thigh muscle changes in knee osteoarthritis outcomes: Osteoarthritis Initiative data.
        Radiology. 2022; 305: 169-178
        • Hayashi D.
        • Roemer F.W.
        • Guermazi A.
        Recent advances in research imaging of osteoarthritis with focus on MRI, ultrasound and hybrid imaging.
        Clin Exp Rheumatol. 2018; 36: 43-52
        • Kraus V.B.
        • Collins J.E.
        • Hargrove D.
        • et al.
        Predictive validity of biochemical biomarkers in knee osteoarthritis: Data from the FNIH OA Biomarkers Consortium.
        Ann Rheum Dis. 2017; 76: 186-195
        • Wise B.L.
        • Niu J.
        • Guermazi A.
        • et al.
        Magnetic resonance imaging lesions are more severe and cartilage T2 relaxation time measurements are higher in isolated lateral compartment radiographic knee osteoarthritis than in isolated medial compartment disease—Data from the Osteoarthritis Initiative.
        Osteoarthritis Cartilage. 2017; 25: 85-93
        • Roemer F.W.
        • Kwoh C.K.
        • Hannon M.J.
        • et al.
        Partial meniscectomy is associated with increased risk of incident radiographic osteoarthritis and worsening cartilage damage in the following year.
        Eur Radiol. 2017; 27: 404-413
        • Sharma L.
        • Hochberg M.
        • Nevitt M.
        • et al.
        Knee tissue lesions and prediction of incident knee osteoarthritis over 7 years in a cohort of persons at higher risk.
        Osteoarthritis Cartilage. 2017; 25: 1068-1075
        • Morales Martinez A.
        • Caliva F.
        • Flament I.
        • et al.
        Learning osteoarthritis imaging biomarkers from bone surface spherical encoding.
        Magn Reson Med. 2020; 84: 2190-2203
        • Chang G.H.
        • Park L.K.
        • Le N.A.
        • et al.
        Subchondral bone length in knee osteoarthritis: A deep learning–derived imaging measure and its association with radiographic and clinical outcomes.
        Arthritis Rheumatol. 2021; 73: 2240-2248
        • Morales A.G.
        • Lee J.J.
        • Caliva F.
        • et al.
        Uncovering associations between data-driven learned qMRI biomarkers and chronic pain.
        Sci Rep. 2021; 1121989
        • Roemer F.W.
        • Collins J.
        • Kwoh C.K.
        • et al.
        MRI-based screening for structural definition of eligibility in clinical DMOAD trials: Rapid OsteoArthritis MRI Eligibility Score (ROAMES).
        Osteoarthritis Cartilage. 2020; 28: 71-81
        • Roemer F.W.
        • Collins J.E.
        • Neogi T.
        • Crema M.D.
        • Guermazi A.
        Association of knee OA structural phenotypes to risk for progression: A secondary analysis from the Foundation for National Institutes of Health Osteoarthritis Biomarkers study (FNIH).
        Osteoarthritis Cartilage. 2020; 28: 1220-1228
        • Namiri N.K.
        • Lee J.
        • Astuto B.
        • et al.
        Deep learning for large scale MRI-based morphological phenotyping of osteoarthritis.
        Sci Rep. 2021; 1110915
        • Iriondo C.
        • Liu F.
        • Calivà F.
        • Kamat S.
        • Majumdar S.
        • Pedoia V.
        Towards understanding mechanistic subgroups of osteoarthritis: 8 Year cartilage thickness trajectory analysis.
        J Orthop Res. 2020; 36: 1305-1317
        • Razmjoo A.
        • Caliva F.
        • Lee J.
        • et al.
        T2 analysis of the entire Osteoarthritis Initiative dataset.
        J Orthop Res. 2021; 39: 74-85
        • Suomalainen J.S.
        • Regalado G.
        • Joukainen A.
        • et al.
        Effects of knee flexion and extension on the tibial tuberosity–trochlear groove (TT–TG) distance in adolescents.
        J Exp Orthop. 2018; 5: 31
        • MacLean I.S.
        • Southworth T.M.
        • Dempsey I.J.
        • et al.
        Interobserver reliability and change in the sagittal tibial tubercle–trochlear groove distance with increasing knee flexion angles.
        J Knee Surg. 2022; 35: 1571-1576
        • Harris C.R.
        • Millman K.J.
        • van der Walt S.J.
        • et al.
        Array programming with NumPy.
        Nature. 2020; 585: 357-362
        • pandas McKinney W.
        A foundational Python library for data analysis and statistics.
        Python High Perform Sci Comput. 2011; 14: 1-9
        • Virtanen P.
        • Gommers R.
        • Oliphant T.E.
        • et al.
        SciPy 1.0: Fundamental algorithms for scientific computing in Python.
        Nat Methods. 2020; 17: 261-272
        • Ambra L.F.
        • Hinckel B.B.
        • Arendt E.A.
        • Farr J.
        • Gomoll A.H.
        Anatomic risk factors for focal cartilage lesions in the patella and trochlea: A case-control study.
        Am J Sports Med. 2019; 47: 2444-2453
        • Haj-Mirzaian A.
        • Guermazi A.
        • Hakky M.
        • et al.
        Tibial tuberosity to trochlear groove distance and its association with patellofemoral osteoarthritis-related structural damage worsening: Data from the Osteoarthritis Initiative.
        Eur Radiol. 2018; 28: 4669-4680
        • Damgacı L.
        • Özer H.
        • Duran S.
        Patella–patellar tendon angle and lateral patella–tilt angle decrease patients with chondromalacia patella.
        Knee Surg Sports Traumatol Arthrosc. 2020; 28: 2715-2721
        • Fones L.
        • Jimenez A.E.
        • Cheng C.
        • et al.
        Trochlear dysplasia as shown by increased sulcus angle is associated with osteochondral damage in patients with patellar instability.
        Arthroscopy. 2021; 37: 3469-3476
        • Dai Y.
        • Yin H.
        • Xu C.
        • Zhang H.
        • Guo A.
        • Diao N.
        Association of patellofemoral morphology and alignment with the radiographic severity of patellofemoral osteoarthritis.
        J Orthop Surg Res. 2021; 16: 548
        • Williams J.R.
        • Neal K.
        • Alfayyadh A.
        • et al.
        Knee cartilage T2 relaxation times 3 months after ACL reconstruction are associated with knee gait variables linked to knee osteoarthritis.
        J Orthop Res. 2022; 40: 252-259
        • Maas K.J.
        • Warncke M.
        • Behzadi C.
        • et al.
        Correlation of T2∗ relaxation times of the retropatellar cartilage with tibial tuberosity–trochlea groove distance in professional soccer players.
        Sci Rep. 2020; 1015355
        • Türkmen İ.
        • Işık Y.
        Association between patellofemoral congruence and patellofemoral chondropathy in patients with anterior knee pain: A T2 mapping knee MRI study.
        Eklem Hastalik Cerrahisi. 2018; 29: 93-99
        • Gao K.T.
        • Tibrewala R.
        • Hess M.
        • et al.
        Automatic detection and voxel-wise mapping of lumbar spine Modic changes with deep learning.
        JOR Spine. 2022; 5e1204
        • Namiri N.K.
        • Flament I.
        • Astuto B.
        • et al.
        Deep learning for hierarchical severity staging of anterior cruciate ligament injuries from MRI.
        Radiol Artif Intell. 2020; 2e190207
        • Tibrewala R.
        • Ozhinsky E.
        • Shah R.
        • et al.
        Computer-aided detection AI reduces interreader variability in grading hip abnormalities with MRI.
        J Magn Reson Imaging. 2020; 52: 1163-1172
        • Astuto B.
        • Flament I.
        • Namiri N.K.
        • et al.
        Automatic deep learning assisted detection and grading of abnormalities in knee MRI studies.
        Radiol Artif Intell. 2021; 3e219001