Advertisement

Elevated Posterior Tibial Slope is Associated with Anterior Cruciate Ligament Reconstruction Failures: A Systematic Review and Meta-Analysis

Published:January 20, 2023DOI:https://doi.org/10.1016/j.arthro.2022.12.034

      Abstract

      Purpose

      To evaluate the association of posterior tibial slope with anterior cruciate ligament (ACL) re-injury following primary ACL reconstruction.

      Methods

      Pubmed, Scopus, Embase, and CINAHL databases were searched from inception through March 1, 2021 to retrieve relevant studies. Comparative studies reporting posterior tibial slope (PTS) measurements in a cohort of patients experiencing ACL graft failure versus patients with intact primary ACL reconstruction, or studies comparing patients undergoing revision ACL reconstruction versus primary ACL reconstruction were included for analysis. A random-effects model was used to calculate the overall standardized mean difference (SMD) between groups. The following inclusion criteria were used: English language; full text available; Level I, II, or III evidence; human studies; and skeletally mature patients.

      Results

      After systematically screening 1912 studies, 15 studies met the inclusion/exclusion criteria. Radiographic measurements were used in 6 studies reporting medial PTS in 411 ACL failures versus 2808 controls. Patients with ACL failure had significantly higher medial PTS compared with controls (SMD, 0.50; 95% confidence interval (CI): 0.23, 0.77; P<.001). Magnetic resonance imaging (MRI) was used in 9 studies reporting lateral PTS measurements in 641 patients with a failed ACL reconstruction compared to 705 controls. Seven of the MRI studies also measured medial PTS in 552 failures versus 641 controls. Patients with ACL Failure had significantly higher lateral PTS on MRI (SMD, 0.58; 95% CI 0.13, 1.03; P=0.012) and medial PTS on MRI (SMD, 0.59; 95% CI 0.23, 0.96; P=0.001) compared to controls.

      Conclusions

      The present meta-analysis demonstrated that patients with elevated PTS on radiographs and MRI are at increased risk for ACL graft failure after primary ACL reconstruction.

      Level of Evidence

      Level III, meta-analysis of Level III studies
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Herzog M.M.
        • Marshall S.W.
        • Lund J.L.
        • Pate V.
        • Mack C.D.
        • Spang J.T.
        Trends in Incidence of ACL Reconstruction and Concomitant Procedures Among Commercially Insured Individuals in the United States, 2002-2014.
        Sports Health. 2018; 10: 523-531https://doi.org/10.1177/1941738118803616
        • Wiggins A.J.
        • Grandhi R.K.
        • Schneider D.K.
        • Stanfield D.
        • Webster K.E.
        • Myer G.D.
        Risk of Secondary Injury in Younger Athletes after Anterior Cruciate Ligament Reconstruction.
        Am J Sports Med. 2016; 44: 1861-1876https://doi.org/10.1177/0363546515621554
        • Kamien P.M.
        • Hydrick J.M.
        • Replogle W.H.
        • Go L.T.
        • Barrett G.R.
        Age, graft size, and tegner activity level as predictors of failure in anterior cruciate ligament reconstruction with hamstring autograft.
        Am J Sports Med. 2013; 41: 1808-1812https://doi.org/10.1177/0363546513493896
        • Glogovac G.
        • Schumaier A.P.
        • Grawe B.M.
        Return to Sport Following Revision Anterior Cruciate Ligament Reconstruction in Athletes: A Systematic Review.
        Arthroscopy. 2019; 35: 2222-2230https://doi.org/10.1016/j.arthro.2019.01.045
        • Wright R.W.
        • Gill C.S.
        • Chen L.
        • et al.
        Outcome of Revision Anterior Cruciate Ligament.
        J Bone Joint Surg Am. 2012; 94: 531-536https://doi.org/10.2106/jbjs.k.00733
        • Bayer S.
        • Meredith S.J.
        • Wilson K.
        • et al.
        Knee Morphological Risk Factors for Anterior Cruciate Ligament Injury.
        J Bone Joint Surg Am. 2020; 102: 703-718https://doi.org/10.2106/jbjs.19.00535
        • Salmon L.J.
        • Heath E.
        • Akrawi H.
        • Roe J.P.
        • Linklater J.
        • Pinczewski L.A.
        20-Year Outcomes of Anterior Cruciate Ligament Reconstruction With Hamstring Tendon Autograft: The Catastrophic Effect of Age and Posterior Tibial Slope.
        Am J Sports Med. 2018; 46: 531-543https://doi.org/10.1177/0363546517741497
        • Wang Y lun
        • Yang T.
        • Zeng C.
        • et al.
        Association Between Tibial Plateau Slopes and Anterior Cruciate Ligament Injury: A Meta-analysis.
        Arthroscopy. 2017; 33 (e4): 1248-1259https://doi.org/10.1016/j.arthro.2017.01.015
        • Zeng C.
        • Cheng L.
        • Wei J.
        • et al.
        The influence of the tibial plateau slopes on injury of the anterior cruciate ligament: A meta-analysis.
        Knee Surg Sports Traumatol Arthrosc. 2014; 22: 53-65https://doi.org/10.1007/s00167-012-2277-y
        • Christensen J.J.
        • Krych A.J.
        • Engasser W.M.
        • Vanhees M.K.
        • Collins M.S.
        • Dahm D.L.
        Lateral Tibial Posterior Slope Is Increased in Patients with Early Graft Failure after Anterior Cruciate Ligament Reconstruction.
        Am J Sports Med. 2015; 43: 2510-2514https://doi.org/10.1177/0363546515597664
        • Su A.W.
        • Bogunovic L.
        • Smith M.v.
        • et al.
        Medial Tibial Slope Determined by Plain Radiography Is Not Associated with Primary or Recurrent Anterior Cruciate Ligament Tears.
        J Knee Surg. 2020; 33: 22-28https://doi.org/10.1055/s-0038-1676456
        • Voleti P.B.
        • Donegan D.J.
        • Baldwin K.D.
        • Lee G.C.
        Level of evidence of presentations at american academy of orthopaedic surgeons annual meetings.
        J Bone Joint Surg Am. 2012; 94: 1-5https://doi.org/10.2106/JBJS.J.01860
        • DerSimonian R.
        • Laird N.
        Meta-analysis in clinical trials.
        Control Clin Trials. 1986; 7: 177-188https://doi.org/10.1016/0197-2456(86)90046-2
        • Higgins J.P.
        • Thompson S.G.
        • Deeks J.J.
        • Altman D.G.
        Measuring inconsistency in meta-analyses.
        BMJ. 2003; 327: 557-560https://doi.org/10.1007/s10844-006-2974-4
        • Egger M.
        • Smith G.D.
        • Schneider M.
        • Minder C.
        Bias in meta-analysis detected by a simple.
        graphical test BMJ. 1997; 315: 629-634https://doi.org/10.1136/bmj.315.7109.629
        • Ahmed I.
        • Salmon L.
        • Roe J.
        • Pinczewski L.
        The long-term clinical and radiological outcomes in patients who suffer recurrent injuries to the anterior cruciate ligament after reconstruction.
        Bone Joint J. 2017; 99B: 337-343https://doi.org/10.1302/0301-620X.99B3.37863
        • Lee C.C.
        • Youm Y.S.
        • Cho S do
        • et al.
        Does Posterior Tibial Slope Affect Graft Rupture Following Anterior Cruciate Ligament Reconstruction?.
        Arthroscopy. 2018; 34: 2152-2155https://doi.org/10.1016/j.arthro.2018.01.058
        • Mitchell J.J.
        • Cinque M.E.
        • Dornan G.J.
        • et al.
        Primary Versus Revision Anterior Cruciate Ligament Reconstruction: Patient Demographics, Radiographic Findings, and Associated Lesions.
        Arthroscopy. 2018; 34: 695-703https://doi.org/10.1016/j.arthro.2017.08.305
        • Ni Q.K.
        • Song G.Y.
        • Zhang Z.J.
        • et al.
        Steep Posterior Tibial Slope and Excessive Anterior Tibial Translation Are Predictive Risk Factors of Primary Anterior Cruciate Ligament Reconstruction Failure: A Case-Control Study With Prospectively Collected Data.
        Am J Sports Med. 2020; 48: 2954-2961https://doi.org/10.1177/0363546520949212
        • Shelbourne K.D.
        • Benner R.W.
        • Jones J.A.
        • Gray T.
        Posterior Tibial Slope in Patients Undergoing Anterior Cruciate Ligament Reconstruction With Patellar Tendon Autograft: Analysis of Subsequent ACL Graft Tear or Contralateral ACL Tear.
        Am J Sports Med. 2021; 49: 620-625https://doi.org/10.1177/0363546520982241
        • Li Y.
        • Hong L.
        • Feng H.
        • Wang Q.
        • Zhang H.
        • Song G.
        Are Failures of Anterior Cruciate Ligamen Reconstruction Associated with Steep Posterior Tibial Slopes? A Case Control Study.
        Chin Med J. 2014; 127: 2649-2653https://doi.org/10.1039/c2ay25041a
        • Levins J.G.
        • Sturnick D.R.
        • Argentieri E.C.
        • et al.
        Geometric Risk Factors Associated with Noncontact Anterior Cruciate Ligament Graft Rupture.
        Am J Sports Med. 2016; 44: 2537-2545https://doi.org/10.1177/0363546516657525
        • Jaecker V.
        • Drouven S.
        • Naendrup J.H.
        • Kanakamedala A.C.
        • Pfeiffer T.
        • Shafizadeh S.
        Increased medial and lateral tibial posterior slopes are independent risk factors for graft failure following ACL reconstruction.
        Arch Orthop Trauma Surg. 2018; 138: 1423-1431https://doi.org/10.1007/s00402-018-2968-z
        • Sauer S.
        • English R.
        • Clatworthy M.
        The Ratio of Tibial Slope and Meniscal Bone Angle for the Prediction of ACL Reconstruction Failure Risk.
        Spine J. 2018; 04: e152-e159https://doi.org/10.1055/s-0038-1668111
        • Digiacomo J.E.
        • Palmieri-Smith R.M.
        • Redman J.A.
        • Lepley L.K.
        Examination of knee morphology after secondary ipsilateral ACL injury compared with those that have not been reinjured: A preliminary study.
        J Sport Rehabil. 2018; 27: 73-82https://doi.org/10.1123/jsr.2016-0093
        • Cooper J.D.
        • Wang W.
        • Prentice H.A.
        • Funahashi T.T.
        • Maletis G.B.
        The Association Between Tibial Slope and Revision Anterior Cruciate Ligament Reconstruction in Patients ≤21 Years Old: A Matched Case-Control Study Including 317 Revisions.
        Am J Sports Med. 2019; 47: 3330-3338https://doi.org/10.1177/0363546519878436
        • Grassi A.
        • Signorelli C.
        • Urrizola F.
        • et al.
        Patients With Failed Anterior Cruciate Ligament Reconstruction Have an Increased Posterior Lateral Tibial Plateau Slope: A Case-Controlled Study.
        Arthroscopy. 2019; 35: 1172-1182https://doi.org/10.1016/j.arthro.2018.11.049
        • Ziegler C.G.
        • DePhillipo N.N.
        • Kennedy M.I.
        • Dekker T.J.
        • Dornan G.J.
        • LaPrade R.F.
        Beighton Score, Tibial Slope, Tibial Subluxation, Quadriceps Circumference Difference, and Family History Are Risk Factors for Anterior Cruciate Ligament Graft Failure: A Retrospective Comparison of Primary and Revision Anterior Cruciate Ligament Reconstruction.
        Arthroscopy. 2021; 37: 195-205https://doi.org/10.1016/j.arthro.2020.08.031
        • Hashemi J.
        • Chandrashekar N.
        • Gill B.
        • et al.
        The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint.
        Bone Join. J. 2008; 90: 2724-2734https://doi.org/10.2106/JBJS.G.01358
        • Hudek R.
        • Schmutz S.
        • Regenfelder F.
        • Fuchs B.
        • Koch P.P.
        Novel measurement technique of the tibial slope on conventional MRI.
        Clin Orthop Relat Res. 2009; 467: 2066-2072https://doi.org/10.1007/s11999-009-0711-3
        • Grassi A.
        • Signorelli C.
        • Urrizola F.
        • et al.
        Anatomical features of tibia and femur: Influence on laxity in the anterior cruciate ligament deficient knee.
        Knee. 2018; 25: 577-587https://doi.org/10.1016/j.knee.2018.03.017
        • Bernhardson A.S.
        • Aman Z.S.
        • Dornan G.J.
        • et al.
        Tibial Slope and Its Effect on Force in Anterior Cruciate Ligament Grafts: Anterior Cruciate Ligament Force Increases Linearly as Posterior Tibial Slope Increases.
        Am J Sports Med. 2019; 47: 296-302https://doi.org/10.1177/0363546518820302
        • Imhoff F.B.
        • Mehl J.
        • Comer B.J.
        • et al.
        Slope-reducing tibial osteotomy decreases ACL-graft forces and anterior tibial translation under axial load.
        Knee Surg Sports Traumatol Arthrosc. 2019; 27: 3381-3389https://doi.org/10.1007/s00167-019-05360-2
        • Alici T.
        • Esenyel C.Z.
        • Esenyel M.
        • Imren Y.
        • Ayanoglu S.
        • Cubuk R.
        Relationship between Meniscal Tears and Tibial Slope on the Tibial Plateau.
        Eurasian J Med. 2011; 42: 146-151https://doi.org/10.5152/eajm.2011.35
        • Wright R.W.
        • Huston L.J.
        • Spindler K.P.
        • et al.
        Descriptive epidemiology of the multicenter ACL revision study (MARS) cohort.
        Am J Sports Med. 2010; 38: 1979-1986https://doi.org/10.1177/0363546510378645
        • Dejour D.
        • Saffarini M.
        • Demey G.
        • Baverel L.
        Tibial slope correction combined with second revision ACL produces good knee stability and prevents graft rupture.
        Knee Surgery, Sports Traumatology, Arthroscopy. 2015; 23: 2846-2852https://doi.org/10.1007/s00167-015-3758-6
        • Sonnery-Cottet B.
        • Mogos S.
        • Thaunat M.
        • et al.
        Proximal tibial anterior closing wedge osteotomy in repeat revision of anterior cruciate ligament reconstruction.
        American Journal of Sports Medicine. 2014; 42: 1873-1880https://doi.org/10.1177/0363546514534938
        • Akoto R.
        • Alm L.
        • Drenck T.C.
        • Frings J.
        • Krause M.
        • Frosch K.H.
        Slope-Correction Osteotomy with Lateral Extra-articular Tenodesis and Revision Anterior Cruciate Ligament Reconstruction Is Highly Effective in Treating High-Grade Anterior Knee Laxity.
        Am J Sports Med. 2020 Dec; 48: 3478-3485https://doi.org/10.1177/0363546520966327