Advertisement
Original Article|Articles in Press

Increased Medial Femoral Condyle Angle and Narrow Intercondylar Notch Are Associated With Medial Meniscus Posterior Root Tear

  • Harun Altinayak
    Correspondence
    Address correspondence to Health Sciences University Samsun Training and Research Hospital, Department of Orthopaedics and Traumatology, Peace Boulevard, no. 199, 55090, İlkadım, Samsun, Turkey.
    Affiliations
    Health Sciences University Samsun Training and Research Hospital, Department of Orthopaedics and Traumatology, Samsun, Turkey
    Search for articles by this author
  • Yavuz Selim Karatekin
    Affiliations
    Health Sciences University Samsun Training and Research Hospital, Department of Orthopaedics and Traumatology, Samsun, Turkey
    Search for articles by this author

      Purpose

      The purpose of this study was to investigate the correlation between nontraumatic medial meniscus posterior root tear (MMPRT) and bone morphology of the knee with a particular emphasis on MMPR impingement.

      Methods

      Magnetic resonance imaging (MRI) findings were examined between January 2018 and December 2020. MRI findings of patients with traumatic MMPRT, Kellgren Lawrence stage 3–4 arthropathy on radiographs, single- or multiple-ligament injuries and/or those who underwent treatment for these diseases, and surgery in and around the knee were excluded from the study. MRI measurements included medial femoral condylar angle (MFCA), intercondylar distance (ICD), and intercondylar notch width (ICNW), distal/posterior medial femoral condylar offset ratio, notch shape, medial tibial slope (MTS) angle, and medial proximal tibial angle (MPTA) measurements and spur presence and were compared between groups. All measurements were performed by two board-certified orthopedic surgeons on a best agreement basis.

      Results

      MRI examinations of patients aged 40-60 were analyzed. MRI findings were divided into two groups: the study group of MRI findings of patients with MMPRT (n = 100) and the control group of MRI findings of patients without MMPRT (n = 100). MFCA was found to be significantly higher in the study group (mean: 46.5 ± 3.58) than in the control group (mean: 40.04 ± 4.61) (P < .001). In the study group, the ICD (study group mean: 76.26 ± 4.89; control group mean: 78.18 ± 6.1) was significantly narrower (P = .018), and the ICNW (study group mean: 17.19 ± 2.23; control group mean: 20.48 ± 2.13) was significantly shorter (P < .001). The ICNW/ICD ratio was significantly lower in patients in the study group (0.22 ± 0.02) than in the control group (0.25 ± 0.02) (P < .001). Bone spurs were present in 84% of the study group and only in 28% of those in the control group. In the study group, the most common notch type was A-type with 78%, while the least common was the U-type notch with 10%. However, in the control group, the most common notch type was A-type with 43%, and the least common was the W-type notch with 22%. The distal/posterior medial femoral condylar offset ratio was statistically lower in the study group (0.72 ± 0.07) than in the control group 0.78 ± 0.07) (P < .001). No significant intergroup differences were found in MTS (study group mean: 7.51 ±2.59; control group mean: 7.83 ± 2.57) (P = .390) and MPTA (study group mean: 86.92 ±2.15; control group mean: 87.48 ±1.8) measurements (P = .67).

      Conclusions

      Increased medial femoral condylar angle, low distal/posterior femoral offset ratio, narrow intercondylar distance and intercondylar notch width, A-type notch shape, and spur presence are associated with MMPRT.

      Level of Evidence

      Level III, retrospective cohort study.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Arthroscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bhattacharyya T.
        • Gale D.
        • Dewire P.
        • et al.
        The clinical importance of meniscal tears demonstrated by magnetic resonance imaging in osteoarthritis of the knee.
        J Bone Joint Surg Am. 2003; 85: 4-9
        • Englund M.
        • Guermazi A.
        • Roemer F.W.
        • et al.
        Meniscal tear in knees without surgery and the development of radiographic osteoarthritis among middle-aged and elderly persons: the Multicenter Osteoarthritis Study.
        Arthritis Rheum. 2009; 60: 831-839
        • Furumatsu T.
        • Kamatsuki Y.
        • Fujii M.
        • et al.
        Medial meniscus extrusion correlates with disease duration of the sudden symptomatic medial meniscus posterior root tear.
        Orthop Traumatol Surg Res. 2017; 103: 1179-1182
      1. Bylski-Austrow DI, Ciarelli MJ, Kayner DC, Matthews LS, Goldstein SA. Displacements of the menisci under joint load: An in vitro study in human knees. J Biomech1994;27:421-431.

        • Bhatia S.
        • LaPrade C.M.
        • Ellman M.B.
        • LaPrade R.F.
        Meniscal root tears: Significance, diagnosis, and treatment.
        Am J Sports Med. 2014; 42: 3016-3030
        • Sung J.H.
        • Ha J.K.
        • Lee D.W.
        • Seo W.Y.
        • Kim J.G.
        Meniscal extrusion and spontaneous osteonecrosis with root tear of medial meniscus: Comparison with horizontal tear.
        Arthroscopy. 2013; 29: 726-732
        • Stein J.M.
        • Yayac M.
        • Conte E.J.
        • Hornstein J.
        Treatment outcomes of meniscal root tears: A systematic review.
        Arthrosc Sports Med Rehabil. 2020; 2: e251-e261
        • Allaire R.
        • Muriuki M.
        • Gilbertson L.
        • Harner C.D.
        Biomechanical consequences of a tear of the posterior root of the medial meniscus. Similar to total meniscectomy.
        J Bone Joint Surg Am. 2008; 90: 1922-1931
        • Harner C.D.
        • Mauro C.S.
        • Lesniak B.P.
        • Romanowski J.R.
        Biomechanical consequences of a tear of the posterior root of the medial meniscus: Surgical technique.
        J Bone Joint Surg Am. 2009; 91: 257-270
        • Park H.J.
        • Chang M.J.
        • Cho H.J.
        • et al.
        Medial meniscus posterior root repair restores contact pressure and contact area to its native state even after opening-wedge high tibial osteotomy: A cadaveric biomechanical study.
        Arthroscopy. 2022; 39: 638-646
        • Furumatsu T.
        • Okazaki Y.
        • Okazaki Y.
        • et al.
        Injury patterns of medial meniscus posterior root tears.
        Orthop Traumatol Surg Res. 2019; 105: 107-111
        • Hwang B.Y.
        • Kim S.J.
        • Lee S.W.
        • et al.
        Risk factors for medial meniscus posterior root tear.
        Am J Sports Med. 2012; 40: 1606-1610
        • Kodama Y.
        • Furumatsu T.
        • Tamura M.
        • et al.
        Steep posterior slope of the medial tibial plateau and anterior cruciate ligament degeneration contribute to medial meniscus posterior root tears in young patients.
        Knee Surg Sports Traumatol Arthrosc. 2023; 31: 279-285
        • Hiranaka T.
        • Furumatsu T.
        • Okazaki Y.
        • et al.
        Steep medial tibial slope and prolonged delay to surgery are associated with bilateral medial meniscus posterior root tear.
        Knee Surg Sports Traumatol Arthrosc. 2021; 29: 1052-1057
        • Okazaki Y.
        • Furumatsu T.
        • Kodama Y.
        • et al.
        Steep posterior slope and shallow concave shape of the medial tibial plateau are risk factors for medial meniscus posterior root tears.
        Knee Surg Sports Traumatol Arthrosc. 2019; 32: 301-306
        • Jiang J.
        • Liu Z.
        • Wang X.
        • et al.
        Increased posterior tibial slope and meniscal slope could be risk factors for meniscal injuries: a systematic review.
        Arthroscopy. 2022; 38: 2331-2341
        • Bayer S.
        • Meredith S.J.
        • Wilson K.W.
        • et al.
        Knee morphological risk factors for anterior cruciate ligament injury: A systematic review.
        J Bone Jt Surg Am. 2020; 102: 703-718
        • Van Kuijk K.S.R.
        • Reijman M.
        • Bierma-Zeinstra S.M.A.
        • Meuffels D.E.
        Smaller intercondylar notch size and smaller ACL volume increase posterior cruciate ligament rupture risk.
        Knee Surg Sports Traumatol Arthrosc. 2023; 31: 449-454
        • Takahashi K.
        • Hashimoto S.
        • Kiuchi S.
        • et al.
        Bone morphological factors influencing cartilage degeneration in the knee.
        Modern Rheumatol. 2018; 28: 351-357
        • Zeng C.
        • Gao S.G.
        • Wei J.
        • et al.
        The influence of the intercondylar notch dimensions on injury of the anterior cruciate ligament: a meta-analysis.
        Knee Surg Sports Traumatol Arthrosc. 2013; 21: 804-815
        • Padalecki J.R.
        • Jansson K.S.
        • Smith S.D.
        • et al.
        Biomechanical consequences of a complete radial tear adjacent to the medial meniscus posterior root attachment site: In situ pull-out repair restores derangement of joint mechanics.
        Am J Sport Med. 2014; 42: 699-707
        • Harper K.W.
        • Helms C.A.
        • Lambert III, H.S.
        • Higgins L.D.
        Radial meniscal tears: Significance, incidence, and MR appearance.
        Am J Roentgenol. 2005; 185: 1429-1434
        • Furumatsu T.
        • Fujii M.
        • Kodama Y.
        • Ozaki T.
        A giraffe neck sign of the medial meniscus: A characteristic finding of the medial meniscus posterior root tear on magnetic resonance imaging.
        J Orthop Sci. 2017; 22: 731-736
        • Costa C.R.
        • Morrison W.B.
        • Carrino J.A.
        Medial meniscus extrusion on knee MRI: Is extent associated with severity of degeneration or type of tear?.
        Am J Roentgenol. 2004; 183: 17-23
        • Barnum M.S.
        • Boyd E.D.
        • Vacek P.
        • Slauterbeck J.R.
        • Beynnon B.D.
        Association of geometric characteristics of knee anatomy (alpha angle and intercondylar notch type) with noncontact ACL injury.
        Am J Sports Med. 2021; 49: 2624-2630
        • Bouras T.
        • Fennema P.
        • Burke S.
        • Bosman H.
        Stenotic intercondylar notch type is correlated with anterior cruciate ligament injury in female patients using magnetic resonance imaging.
        Knee Surg Sports Traumatol Arthrosc. 2018; 26: 1252-1257
        • Shekari I.
        • Shekarchi B.
        • Abbasian M.
        • Minator S.M.
        • Momeni M.A.
        • Kazemi S.M.
        Predictive factors associated with anterolateral ligament injury in the patients with anterior cruciate ligament tear.
        Indian J Orthop. 2020; 54: 655-664
        • Hudek R.
        • Schmutz S.
        • Regenfelder F.
        • Fuchs B.
        • Koch P.P.
        Novel measurement technique of the tibial slope on conventional MRI.
        Clin Orthop Relat Res. 2009; 467: 2066-2072
        • Lipps D.B.
        • Wilson A.M.
        • Ashton-Miller J.A.
        • Wojtys E.M.
        Evaluation of different methods for measuring lateral tibial slope using magnetic resonance imaging.
        Am J Sports Med. 2012; 40: 2731-2736
        • Shah N.S.
        • Kyriakedes J.C.
        • Liu R.W.
        An MRI-based study to investigate if the patella is truly centred between the femoral condyles in the coronal plane.
        Strat Trauma Limb Reconstr. 2022; 17: 63-67
        • Bigach S.D.
        • Carender C.N.
        • Liu R.W.
        Is bony knee alignment representative of the true joint surface in skeletally immature patients? A magnetic resonance imaging study.
        Strat Trauma Limb Reconstr. 2020; 15: 79
        • Van Kuijk K.S.R.
        • Reijman M.
        • Bierma-Zeinstra S.M.A.
        • Waarsing J.H.
        • Meuffels D.E.
        Posterior cruciate ligament injury is influenced by intercondylar shape and size of tibial eminence.
        Bone Jt J. 2019; 101: 1058-1062
        • Okazaki Y.
        • Furumatsu T.
        • Kajiki Y.
        • et al.
        A posterior shiny-corner lesion of the tibia is observed in the early phase after medial meniscus posterior root tear.
        Eur J Orthop Surg Traumatol. 2022; 32: 301-306
        • Kodama Y.
        • Furumatsu T.
        • Kamatsuki Y.
        • et al.
        Preliminary diagnosis of medial meniscus posterior root tears using the Rosenberg radiographic view.
        Knee Surg Relat Res. 2019; 31: 1-8
        • Allen C.R.
        • Wong E.K.
        • Livesay G.A.
        • Sakane M.
        • Fu F.H.
        • Woo S.L.
        Importance of the medial meniscus in the anterior cruciate ligament-deficient knee.
        J Orthop Res. 2000; 18: 109-115
        • Masuda S.
        • Furumatsu T.
        • Okazaki Y.
        • et al.
        Medial meniscus posterior root tear induces pathological posterior extrusion of the meniscus in the knee-flexed position: An open magnetic resonance imaging analysis.
        Orthop Traumatol Surg Res. 2018; 104: 485-489
        • Davis T.J.
        • Shelbourne K.D.
        • Klootwyk T.E.
        Correlation of the intercondylar notch width of the femur to the width of the anterior and posterior cruciate ligaments.
        Knee Surg Sports Traumatol Arthrosc. 1999; 7: 209-214
        • Dienst M.
        • Schneider G.
        • Altmeyer K.
        • et al.
        Correlation of intercondylar notch cross sections to the ACL size: A high resolution MR tomographic in vivo analysis.
        Arch Orthop Trauma Surg. 2007; 127: 253-260
        • Triantafyllidi E.
        • Paschos N.K.
        • Goussia A.
        • et al.
        The shape and the thickness of the anterior cruciate ligament along its length in relation to the posterior cruciate ligament: A cadaveric study.
        Arthroscopy. 2013; 29: 1963-1973
        • Khan N.
        • McMahon P.
        • Obaid H.
        Bony morphology of the knee and non-traumatic meniscal tears: Is there a role for meniscal impingement?.
        Skeletal Radiol. 2014; 43: 955-962
        • Marouane H.
        • Shirazi-Adl A.
        • Hashemi J.
        Quantification of the role of tibial posterior slope in knee joint mechanics and ACL force in simulated gait.
        J Biomech. 2015; 48: 1899-1905
        • Shelburne K.B.
        • Kim H.J.
        • Sterett W.I.
        • Pandy M.G.
        Effect of posterior tibial slope on knee biomechanics during functional activity.
        J Orthop Res. 2011; 29: 223-231
        • Giffin J.R.
        • Vogrin T.M.
        • Zantop T.
        • Woo S.L.
        • Harner C.D.
        Effects of increasing tibial slope on the biomechanics of the knee.
        Am J Sports Med. 2004; 32: 376-382
        • Shen Y.
        • Li X.
        • Fu X.
        • Wang W.
        A 3D finite element model to investigate prosthetic interface stresses of different posterior tibial slope.
        Knee Surg Sports Traumatol Arthrosc. 2015; 23: 3330-3336
        • Matsuda S.
        • Miura H.
        • Nagamine R.
        • et al.
        Posterior tibial slope in the normal and varus knee.
        Am J Knee Surg. 1999; 12: 165-168
        • Meric G.
        • Gracitelli G.C.
        • Aram L.
        • Swank M.
        • Bugbee W.D.
        Tibial slope is highly variable in patients undergoing primary total knee arthroplasty: Analysis of 13,546 computed tomography scans.
        J Arthroplasty. 2015; 30: 1228-1232